tìm số nguyên n để phân số (7.n-1)/(3n-1) có giá trị lớn nhất
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Để A là phân số thì 3n + 7 ko chia hết cho n + 1
<=> n + 1 khác Ư(4) = {-1;-2;-4;1;2;4}
=> n khác {-2;-3;-5;0;1;3}
Để A là số nguyên thì 3n + 7 chia hết cho n + 1
=> 3n + 3 + 4 chia hết cho n + 1
=> 3.(n + 1) + 4 chia hết cho n + 1
=> 4 chia hết cho n + 1
=> n + 1 thuộc Ư(4) = {-4;-2;-1;1;2;4}
=> n = {-5;-3;-2;0;1;3}
mk giải câu a thui nha
để \(\frac{6n-1}{3n+2}\)là số nguyên thì:
(6n-1) sẽ phải chia hết cho(3n+2)
mà (3n+2) chja hết cho (3n+2)
=> 2(3n+2) cx sẽ chia hết cho (3n+2)
<=> (6n+4) chia hết cho (3n+2)
mà (6n-1) chia hết cho (3n+2)
=> [(6n+4)-(6n-1)] chja hết cho (3n+2)
(6n+4-6n+1) chja hết cho 3n+2
5 chia hết cho3n+2
=> 3n+2 \(\in\){1,5,-1,-5}
ta có bảng
3n+2 | 1 | 5 | -1 | -5 |
3n | 3 | 7 | 1 | -3 |
n | 1 | -1 |
vậy....
bạn có thể giải thích ra được không !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
\(A=\frac{n^4-3n^3-n^2+3n+7}{n-3}=\frac{n^3\left(n-3\right)-\left(n^2-3n\right)+7}{n-3}=\frac{n^3\left(n-3\right)-n\left(n-3\right)+7}{n-3}\)
\(=\frac{\left(n-3\right)\left(n^3-n\right)+7}{n-3}=\frac{\left(n-3\right)\left(n^3-n\right)}{n-3}+\frac{7}{n-3}=n^3-n+\frac{7}{n-3}\)
Theo đề bài n là số nguyên => \(n^3-n\) là số nguyên
Để \(n^3-n+\frac{7}{n-3}\) có giá trị là 1 số nguyên <=> \(\frac{7}{n-3}\) có giá trị là 1 số nguyên
=> n - 3 là ước của 7 => Ư(7) = { - 7; - 1; 1; 7 }
Ta có bảng sau :
n - 3 | - 7 | - 1 | 1 | 7 |
n | - 4 | 2 | 4 | 10 |
Mà x là số nguyên lớn nhất => x = 10
Vậy x = 10
để M là số nguyên thì 6n-1chia hết cho 3n+2
6n-1 chia hết cho 3n+2
mà 3n+ 2 luôn chia hết cho 3n+2 suy ra 2.(3n+2) cũng chia hết cho 3n+2
suy ra (6n-1)-2. (3n+2) chia hết cho 3n+2
6n-1 - 6n-4 chia hết cho 3n+2
-5 chia hết cho 3n+2
3n+2 thuộc Ước của -5 thuộc (1,5,-1,-5)
3n thuộc (-1,3,-3,-8)
n thuộc (-1/3,1,-1,-8/3)
mà n là số nguyên nên n thuộc (1 và -1)
để M có gt nhỏ nhất thì n = -1
câu a mình nghĩ mình đúng nhưng câu b thì mk chưa chắc. Xin lỗi nhìu nhoa
\(A=\frac{3n+8}{n-3}=\frac{3n-9+17}{n-3}-\frac{3\left(n-3\right)+17}{n-3}=3+\frac{17}{n-3}\)
Để \(A=3+\frac{17}{n-3}\) đạt GTLN <=> \(\frac{17}{n-3}\)đạt GTLN
=> \(n-3\) là số nguyên dương nhỏ nhất
=> \(n-3=1\Rightarrow n=4\)
\(\Rightarrow A_{max}=\frac{3.4+8}{4-3}=20\) tại \(n=4\)
Để \(A\)lớn nhất \(\Leftrightarrow3n+8\)lớn nhất (sao cho \(3n+8>0\))
\(\Leftrightarrow n-3\)nhỏ nhất (sao cho \(n-3>0\))
Mà \(n\in Z\Rightarrow n-3\in Z\)
\(\Rightarrow n-3\)nhỏ nhất \(\Leftrightarrow n-3=1\Rightarrow n=4\)(thỏa mãn)
\(\Rightarrow3n+8=3\cdot4+8=20\)
Vậy \(A\)lớn nhất khi \(A=20\)tại \(n=4\)
Chúc các bạn học tốt nhớ k đúng cho mình nhé!!!!!!!