Có 2 người bắn cung (Ak là người thứ k bắn trúng k=1;2 ) biết rằng khả năng người thứ nhất bắn trúng là 0,6 và người thứ hai là 0,3 .tính xác xuất A:cả hai người trúng B:cả hai đều trượt C:có ít nhất 1 người trúng
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ak là biến cố: "Người thứ k bắn trúng"
- A1 : "Người thứ nhất bắn trúng"
⇒ : “Người thứ nhất không bắn trúng”.
- A2 : "Người thứ hai bắn trúng"
⇒ : “Người thứ hai không bắn trúng”.
Gọi X là biến cố: “có đúng 2 người bắn trúng đích “
· Gọi A là biến cố: “người thứ nhất bắn trúng đích P(A)=0,8; P ( A ¯ ) = 0 , 2
Gọi B là biến cố: “người thứ hai bắn trúng đích P(B)=0,6; P ( B ¯ ) = 0 , 4
· Gọi C là biến cố: “người thứ ba bắn trúng đích P(C)=0,5; P ( C ¯ ) = 0 , 5
Ta thấy biến cố A, B, C là 3 biến cố độc lập nhau, theo công thức nhân xác suất ta có:
P ( X ) = P ( A . B . C ¯ ) + P ( A . B ¯ . C ) + P ( A ¯ . B . C ) =0,8.0,6.0,5+0,8.0,4.0,5+0,2.0,6.0,5=0,46
Chọn C.
Gọi X là biến cố: “có đúng 2 người bắn trúng đích “
Gọi A là biến cố: “người thứ nhất bắn trúng đích” ⇒ P A = 0 , 8 ; P A ¯ = 0 , 2.
Gọi B là biến cố: “người thứ hai bắn trúng đích” ⇒ P B = 0 , 6 ; P B ¯ = 0 , 4.
Gọi C là biến cố: “người thứ ba bắn trúng đích” ⇒ P C = 0 , 5 ; P C ¯ = 0 , 5.
Ta thấy biến cố A, B, C là 3 biến cố độc lập nhau, theo công thức nhân xác suất ta có:
P X = P A . B . C ¯ + P A . B ¯ . C + P A ¯ . B . C = 0 , 8.0 , 6.0 , 5 + 0 , 8.0 , 4.0 , 5 + 0 , 2.0 , 6.0 , 5 = 0 , 46.
Chọn đáp án C.
Theo bài ra biến cố Ak: “ xạ thủ thứ k bắn trúng đích ”, với k=1,2,3 thì biến cố đối
Biến cố M “ không có xạ thủ nào bắn trúng đích” , tức là cả ba xạ thủ đều bắn trượt nên :
Chọn B
Gọi C là biến cố "Có ít nhất một người bắn trúng bia", khi đó biến cố đối của B là biến cố C
Do đó
P
(
C
)
=
1
−
P
(
B
)
=
1
−
0
,
06
=
0
,
94
.
Chọn đáp án C.
Phép thử T được xét là: "Hai xạ thủ cùng bắn vào bia".
Theo đề ra ta có = "Người thứ k không bắn trúng", k = 1, 2. Từ đó ta có:
a) A = "Không ai bắn trúng" = "Người thứ nhất không bắn trúng và người thứ hai không bắn trúng". Suy ra A = . .
Tương tự, ta có B = "Cả hai đều bắn trúng" = . .
Xét C = "Có đúng một người bắn trúng", ta có C là hợp của hai biến cố sau:
"Người thứ nhất bắn trúng và người thứ hai bắn trượt" = A1 . .
"Người thứ nhất bắn trượt và người thứ hai bắn trúng" = . A2 .
Suy ra C = A1 . ∪ . A2 .
Tương tự, ta có D = A1 ∪ A2 .
b) Gọi là biến cố: " Cả hai người đều bắn trượt". Ta có
= . = A.
Hiển nhiên B ∩ C = Φ nên suy ra B và C xung khắc với nhau.
Từ giả thiết suy ra xác suất để người thứ nhất, thứ hai, thứ ba bắn không trúng đích lần lượt là 0,5; 0,4 và 0,2
Để có đúng người bắn trúng đích thì có các trường hợp sau
Vậy xác suất để có đúng người bắn trúng đích là
Chọn B.
Gọi A 1 là biến cố “ Người thứ nhất bắn trúng bia”
A 2 là biến cố “ Người thứ hai bắn trúng bia”
Gọi A là biến cố “cả hai người bắng trúng”, suy ra A = A 1 ∩ A 2
Vì A 1 ; A 2 là độc lập nên P A = P A 1 P A 2 = 0 , 8 . 0 , 7 = 0 , 56
Chọn đáp án C.
Khả năng bắn trượt của người thứ nhất là 0,4 và người thứ hai là 0,7
a. Xác suất cả 2 bắn trúng: \(0,6.0,3=0,18\)
b. Cả hai đều trượt: \(0,4.0,7=0,28\)
c. Có ít nhất 1 người bắn trúng: \(1-0,28=0,72\)