K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 12 2021

\(\left\{{}\begin{matrix}a+b+c\ge2\sqrt{c\left(a+b\right)}\\b+c\ge2\sqrt{bc}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\left(a+b+c\right)^2\ge4a\left(b+c\right)\\\left(b+c\right)^2\ge4bc\end{matrix}\right.\\ \Leftrightarrow16\left(b+c\right)=\left(a+b+c\right)^2\left(b+c\right)\\ \ge4a\left(b+c\right)\left(b+c\right)=4a\left(b+c\right)^2\ge4a\cdot4bc=16abc\\ \Leftrightarrow16\left(b+c\right)\ge16abc\\ \Leftrightarrow b+c\ge abc\)

Dấu \("="\Leftrightarrow b=c=1;a=2\)

NV
26 tháng 12 2022

1.

Ta có:

\(x^4+y^4\ge\dfrac{1}{2}\left(x^2+y^2\right)^2=\dfrac{1}{2}\left(x^2+y^2\right)\left(x^2+y^2\right)\ge\left(x^2+y^2\right)xy\)

Đặt vế trái của BĐT cần chứng minh là P, áp dụng bồ đề vừa chứng minh ta có:

\(P\le\dfrac{a.abc}{bc\left(b^2+c^2\right)+a.abc}+\dfrac{b.abc}{ca\left(c^2+a^2\right)+b.abc}+\dfrac{c.abc}{ab\left(a^2+b^2\right)+c.abc}\)

\(P\le\dfrac{a^2.bc}{bc\left(a^2+b^2+c^2\right)}+\dfrac{b^2.ac}{ca\left(a^2+b^2+c^2\right)}+\dfrac{c^2.ab}{ab\left(a^2+b^2+c^2\right)}=1\)

Dấu "=" xảy ra khi \(a=b=c=1\)

2.

\(\dfrac{x^2}{y+z}+\dfrac{y^2}{z+x}+\dfrac{z^2}{x+y}\ge\dfrac{\left(x+y+z\right)^2}{2\left(x+y+z\right)}=\dfrac{x+y+z}{2}=1\)

Dấu "=" xảy ra khi \(x=y=z=\dfrac{2}{3}\)

10 tháng 8 2019

Ta có : \(\hept{\begin{cases}\frac{a}{a'}+\frac{b'}{b}=1\Rightarrow ab+a'b'=a'b\Rightarrow abc+a'b'c=a'bc\left(1\right)\\\frac{b}{b'}=\frac{c'}{c}\Rightarrow bc+b'c'=b'c\Rightarrow a'bc+a'b'c'=a'b'c\left(2\right)\end{cases}}\)

Từ (1) và (2) ta có đpcm

14 tháng 1 2018

 Câu trả lời hay nhất:  áp dụng BĐT bunhiacopxki 
(a² + b² + c²).(1+1+1) ≥ (a.1 + b.1 + c.1)² = 1 
=> a² + b² + c² ≥ 1/3 

dấu "=" xảy ra <=> a/1 = b/1 = c/1 => a = b = c = 1/3

tk mk nha $_$

27 tháng 8 2021

Tùy bạn làm được câu nao thì làm nhưng mà  đừng làm tắt.

NV
27 tháng 8 2021

a. Đề bài sai (thực chất là nó đúng 1 cách hiển nhiên nhưng "dạng" thế này nó sai sai vì ko ai cho kiểu này cả)

Ta có: \(abc=ab+bc+ca\ge3\sqrt[3]{a^2b^2c^2}\Rightarrow abc\ge27\)

\(\Rightarrow a^2+b^2+c^2+5abc\ge a^2+b^2+c^2+5.27>>>>>8\)

b. 

\(4=ab+bc+ca+abc=ab+bc+ca+\sqrt{ab.bc.ca}\le ab+bc+ca+\sqrt{\left(\dfrac{ab+bc+ca}{3}\right)^3}\)

\(\sqrt{\dfrac{ab+bc+ca}{3}}=t\Rightarrow t^3+3t^2-4\ge0\Rightarrow\left(t-1\right)\left(t+2\right)^2\ge0\)

\(\Rightarrow t\ge1\Rightarrow ab+bc+ca\ge3\Rightarrow a+b+c\ge\sqrt{3\left(ab+bc+ca\right)}\ge3\)

- TH1: nếu \(a+b+c\ge4\)

Ta có: \(ab+bc+ca=4-abc\le4\)

\(\Rightarrow P=\left(a+b+c\right)^2-2\left(ab+bc+ca\right)+5abc\ge4^2-2.4+0=8\)

(Dấu "=" xảy ra khi \(\left(a;b;c\right)=\left(2;2;0\right)\) và các hoán vị)

- TH2: nếu \(3\le a+b+c< 4\)

Đặt \(a+b+c=p\ge3;ab+bc+ca=q;abc=r\)

\(P=p^2-2q+5r=p^2-2q+5\left(4-q\right)=p^2-7q+20\)

Áp dụng BĐT Schur:

\(4=q+r\ge q+\dfrac{p\left(4q-p^2\right)}{9}\Leftrightarrow q\le\dfrac{p^3+36}{4p+9}\)

\(\Rightarrow P\ge p^2-\dfrac{7\left(p^3+36\right)}{4p+9}+20=\dfrac{3\left(4-p\right)\left(p-3\right)\left(p+4\right)}{4p+9}+8\ge8\)

(Dấu "=" xảy ra khi \(a=b=c=1\))