tìm tỉ lệ của \(\frac{x}{y}\) biết \(\frac{3x+2y}{2x-3y}\)= \(\frac{5x-y}{4x-6y}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Mjk giải vầy các pax nhận xét nka!
\(\Rightarrow\frac{3x+2y}{2x-3y}=1\)
\(\Rightarrow3x+2y=\left(2x-3y\right)1\)
\(\Rightarrow3x+2y=2x-3y\)
\(\Rightarrow3x-2x=-3y-2y\)
\(\Rightarrow x=-5y\)
\(\Rightarrow\frac{x}{y}=-5\)
c1:Thay số
Q=\(\frac{5+2.4-3.3}{5-2.4+3.3}\)
O=\(\frac{4}{6}\)=\(\frac{2}{3}\)
\(\frac{4x}{6y}=\frac{2x+8}{3y+11}\)
\(4x\left(3y+1\right)=6y\left(2x+8\right)\)
\(12xy+4x=12xy+48y\)
\(4x-48y=0\)
\(4x=48y\)
Ta có:\(\frac{4x}{48y}\)
\(\Leftrightarrow\)\(\frac{x}{y}=\frac{1}{12}\)
Theo đề ta có: \(x:y:z=3:4:5\Rightarrow\frac{x}{3}=\frac{y}{4}=\frac{z}{5}\)
Đặt: \(\frac{x}{3}=\frac{y}{4}=\frac{z}{5}=k\left(k\inℕ^∗\right)\)
Suy ra: \(x=3k;y=4k;z=5k\) Thay vào biểu thức P ta có:
\(P=\frac{3k+8k+15k}{6k+12k+20k}+\frac{6k+12k+20k}{9k+16k+25k}+\frac{9k+16k+25k}{12k+20k+30k}\)
\(P=\frac{26k}{38k}+\frac{38k}{50k}+\frac{50k}{62k}=\frac{13}{19}+\frac{19}{25}+\frac{25}{31}=\frac{33141}{14725}\)
a, \(3x=5y=7z\Rightarrow\frac{x}{\frac{1}{3}}=\frac{y}{\frac{1}{5}}=\frac{z}{\frac{1}{7}}\)
\(\Rightarrow\frac{2x}{\frac{2}{3}}=\frac{y}{\frac{1}{5}}=\frac{3z}{\frac{3}{7}}\)
Áp dụng t/c
\(\Rightarrow\frac{2x}{\frac{2}{3}}=\frac{y}{\frac{1}{5}}=\frac{3z}{\frac{3}{7}}=\frac{2x-y+3z}{\frac{2}{3}-\frac{1}{5}+\frac{3}{7}}=\frac{188}{\frac{105}{94}}=210\)
\(\frac{x}{\frac{1}{3}}=210\Rightarrow x=70\)
\(\frac{y}{\frac{1}{5}}=210\Rightarrow y=42\)
\(\frac{z}{\frac{1}{7}}=210\Rightarrow z=30\)
a)\(ĐKXĐ:x\ne0;-1\)
Ta có:\(\frac{x^3+1}{x}.\left(\frac{1}{x+1}+\frac{x-1}{x^2-x+1}\right)=\frac{x^3+1}{x}.\frac{\left(x^2-x+1\right)+\left(x+1\right)\left(x-1\right)}{\left(x+1\right)\left(x^2-x+1\right)}\)
\(=\frac{x^3+1}{x}.\frac{x^2-x+1+\left(x^2-1\right)}{x^3+1}=\frac{2x^2-x}{x}=\frac{2x\left(x-1\right)}{x}=2\left(x-1\right)\)
a
Đặt \(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}=k\)
\(\Rightarrow x=2k+1;y=3k+2;z=4k+3\)
Thay vào,ta được:
\(2\left(2k+1\right)+3\left(3k+2\right)-\left(4k+3\right)=50\)
\(\Leftrightarrow4k+2+9k+6-4k-3=50\)
\(\Leftrightarrow9k+5=50\)
\(\Leftrightarrow9k=45\)
\(\Leftrightarrow k=5\)
\(\frac{x-1}{2}=\frac{y+3}{4}=\frac{z-5}{6}=\frac{5x-5}{10}=\frac{3y+9}{12}=\frac{4z-20}{24}\)
\(=\frac{5x-5-3y-9-4z+20}{10-12-24}=\frac{\left(5x-3y-4z\right)+\left(20-5-9\right)}{26}=\frac{46+6}{26}=2\)
\(\Rightarrow x=2\cdot2+1=5\)
\(y=4\cdot2-3=5\)
\(z=2\cdot6+5=17\)
Câu c tương tự như câu 1
\(\frac{3x+2y}{2x-3y}=\frac{5x-y}{4x-6y}\Leftrightarrow\left(3x+2y\right)\left(4x-6y\right)=\left(2x-3y\right)\left(5x-y\right)\)
\(\Leftrightarrow12x^2+8xy-18xy-12y^2=10x^2-15xy-2xy+3y^2\)
\(\Leftrightarrow12x^2-10xy-12y^2=10x^2-17xy+3y^2\)
\(\Leftrightarrow12x^2-10x^2=10xy-17xy+3y^2+12y^2\)
\(\Leftrightarrow2x^2=-7xy+15y^2\)
.............