Mn giúp mik vs ạ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
B=\(\left(\dfrac{a+\sqrt{a}}{\sqrt{a}+1}+1\right)\)+\(\left(\dfrac{a-\sqrt{a}}{\sqrt{a}-1}+1\right)\left(x\ge0,x\ne1\right)\)
\(B=\)\(\left[\dfrac{\sqrt{a}\left(\sqrt{a}+1\right)}{\sqrt{a}+1}+1\right]+\left[\dfrac{\sqrt{a}\left(\sqrt{a}-1\right)}{\sqrt{a}-1}+1\right]\)
\(B=\left(\sqrt{a}+1\right)+\left(\sqrt{a}+1\right)=2\sqrt{a}+2\)
b, ĐỂ B=\(\sqrt{a}+1< =>2\sqrt{a}+2=\sqrt{a}+1\)
<=>\(\sqrt{a}=-1\)(vô lí)
vậy a\(\in\phi\)
a: \(=\left(1-\dfrac{\sqrt{x}-3}{\sqrt{x}+3}\right):\left(\dfrac{-\left(\sqrt{x}-3\right)}{\sqrt{x}-2}+\dfrac{\sqrt{x}-2}{\sqrt{x}+3}+\dfrac{x-9}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-2\right)}\right)\)
\(=\dfrac{\sqrt{x}+3-\sqrt{x}+3}{\sqrt{x}+3}:\dfrac{-x+9+x-4\sqrt{x}+4+x-9}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-2\right)}\)
\(=\dfrac{6}{\sqrt{x}+3}\cdot\dfrac{\left(\sqrt{x}+3\right)\left(\sqrt{x}-2\right)}{x-4\sqrt{x}+4}=\dfrac{6}{\sqrt{x}-2}\)
b: Để A nguyên thì \(\sqrt{x}-2\in\left\{1;-1;2;-2;3;-3;6;-6\right\}\)
=>\(x\in\left\{1;16;0;25;64\right\}\)
\(1-\dfrac{x-3\sqrt{x}}{x-9}=1-\dfrac{\sqrt{x}}{\sqrt{x}+3}\) chứ nhỉ?
Câu 6
a: Xét (O) có
DB,DC là tiếp tuyến
nên DB=DC
=>ΔDBC cân tại D
b: Xét (O) cos
ΔCABnội tiếp
AB là đường kính
=>ΔCAB vuông tại C
OB=OC
DB=DC
=>ODlà trung trực của BC
=>OD vuông góc với BC
mà AC vuông góc BC
nên OD//AC
d: Xét ΔCAB vuông tại C có
cos CAO=CA/CB=1/2
=>góc CAO=60 độ
=>ΔOAC đều
=>góc BOC=120 độ
=>góc BDC=60 độ
mà ΔBDC cân tại D
nên ΔBCD đều
\(CB=\sqrt{\left(2R\right)^2-R^2}=R\sqrt{3}\)
\(S_{BCD}=\left(R\sqrt{3}\right)^2\cdot\dfrac{\sqrt{3}}{4}=\dfrac{3\sqrt{3}\cdot R^2}{4}\)
a) \(-\dfrac{1}{6}+\dfrac{5}{13}-\dfrac{5}{13}-\dfrac{11}{12}=-\dfrac{1}{6}-\dfrac{11}{12}=-\dfrac{13}{12}\)
b) \(\dfrac{3^4\cdot4-3^6}{3^5\cdot5+10\cdot3^6}=\dfrac{3^4\left(4-3^2\right)}{3^4\left(15+10\cdot3^2\right)}=\dfrac{4-9}{15+90}=-\dfrac{1}{21}\)
c) \(\left(1-\dfrac{3}{4}\right)^2+\left|-\dfrac{4}{5}\right|-\dfrac{29}{80}\cdot2019^2\) (Câu này thì bạn bấm máy cho nhanh :))
Bài 11:
a) Số mol phân tử khí O2:
\(n_{O2}=\dfrac{3,01.10^{24}}{6,02.10^{23}}=5\left(mol\right)\)
b) Khối lượng khí O2 là:
\(m_{O2}=32.5=160\left(g\right)\)
c) Thể tích khí O2 ở đktc:
\(V_{O2\left(đktc\right)}=5.22,4=112\left(l\right)\)
Bài 9:
nO2= 48/32=1,5(mol)
a) PTHH: C + O2 -to-> CO2
Ta có: nC=nCO2=nO2=1,5(mol)
=>mC=1,5.12=18(g)
b) PTHH: S+ O2 -to-> SO2
Ta có: nS= nSO2=nO2= 1,5(mol)
=>mS=1,5.32=48(g)
c) PTHH: 4 P + 5 O2 -to-> 2 P2O5
Ta có: nP= 4/5. nO2= 4/5. 1,5=1,2(mol)
=>mP= 1,2.31=37,2(g)
Gọi O là trung điểm IK \(\Rightarrow OI=OK=\dfrac{1}{2}IK\)
\(\left(\overrightarrow{MI}+\overrightarrow{IA}\right)\left(\overrightarrow{MI}+\overrightarrow{IB}\right)+\left(\overrightarrow{MK}+\overrightarrow{KC}\right)\left(\overrightarrow{MK}+\overrightarrow{KD}\right)=\dfrac{1}{2}Ik^2\)
\(\Leftrightarrow MI^2-IA^2+MK^2-KC^2=\dfrac{1}{2}IK^2\)
\(\Leftrightarrow\left(\overrightarrow{MO}+\overrightarrow{OI}\right)^2+\left(\overrightarrow{MO}+\overrightarrow{OK}\right)^2=IA^2+KC^2+\dfrac{1}{2}IK^2\)
\(\Leftrightarrow2MO^2+2OI^2=IA^2+KC^2+\dfrac{1}{2}IK^2\)
\(\Leftrightarrow2MO^2+\dfrac{1}{2}IK^2=IA^2+KC^2+\dfrac{1}{2}IK^2\)
\(\Leftrightarrow MO^2=\dfrac{1}{2}\left(IA^2+KC^2\right)=\dfrac{1}{8}\left(AB^2+CD^2\right)\)
\(\Leftrightarrow MO=\dfrac{1}{2\sqrt{2}}\sqrt{AB^2+CD^2}\)
Tập hợp M là đường tròn tâm O bán kính \(\dfrac{\sqrt{AB^2+CD^2}}{2\sqrt{2}}\)
b: Để phương trình có hai nghiệm cùng dấu thì
\(\left\{{}\begin{matrix}4m^2-4\left(m-2\right)\left(m+1\right)>0\\\dfrac{m+1}{m-2}>0\\\dfrac{-2m}{m-2}>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}4m^2-4m^2+4m+8>0\\m>2\\0< m< 2\end{matrix}\right.\Leftrightarrow m>2\)