Tìm số nguyên N sao cho n+2 chia hết cho n-3.Mau lên các bạn ơi
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Answer:
a) \(\left(n+2\right)⋮\left(n-3\right)\)
\(\Rightarrow\left(n-3+5\right)⋮\left(n-3\right)\)
\(\Rightarrow5⋮\left(n-3\right)\)
\(\Rightarrow n-3\) là ước của \(5\), ta có:
Trường hợp 1: \(n-3=-1\Rightarrow n=2\)
Trường hợp 2: \(n-3=1\Rightarrow n=4\)
Trường hợp 3: \(n-3=5\Rightarrow n=8\)
Trường hợp 4: \(n-3=-5\Rightarrow n=-2\)
b) Ta có: \(x-3\inƯ\left(13\right)=\left\{\pm1;\pm13\right\}\)
\(\Rightarrow x\in\left\{4;16;2;-10\right\}\)
Vậy để \(x-3\inƯ\left(13\right)\Rightarrow x\in\left\{4;16;2;-10\right\}\)
c) Ta có: \(x-2\inƯ\left(111\right)\)
\(\Rightarrow x-2\in\left\{\pm111;\pm37;\pm3;\pm1\right\}\)
\(\Rightarrow x\in\left\{-99;-35;1;1;3;5;39;113\right\}\)
d) \(5⋮n+15\Rightarrow n+15\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\)
Trường hợp 1: \(n+15=-1\Rightarrow n=-16\)
Trường hợp 2: \(n+15=1\Rightarrow n=-14\)
Trường hợp 3: \(n+15=5\Rightarrow n=-10\)
Trường hợp 4: \(n+15=-5\Rightarrow n=-20\)
Vậy \(n\in\left\{-14;-16;-10;-20\right\}\)
e) \(3⋮n+24\)
\(\Rightarrow n+24\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)
\(\Rightarrow n\in\left\{-23;-25;-21;-27\right\}\)
f) Ta có: \(x-2⋮x-2\)
\(\Rightarrow4\left(x-2\right)⋮x-2\)
\(\Rightarrow4x-8⋮x-2\)
\(\Rightarrow\left(4x+3\right)-\left(4x-8\right)⋮x-2\)
\(\Rightarrow11⋮x-2\)
\(\Rightarrow x-2\inƯ\left(11\right)=\left\{\pm1;\pm11\right\}\)
\(\Rightarrow x\in\left\{3;13;1;-9\right\}\)
Có 2n-4 chia hết cho n+2
=>2(n+2)8 chia hết cho n+2
=> 8 chia hết cho n+2
=>n+2 thuộc Ư(8)={1;2;4;8;-1;-2;-4;-8}
Phần cuối bạn tự làm nha
Để \(2n-4⋮n+2\)
\(\Leftrightarrow2n+4-8⋮n+2\)
\(\Leftrightarrow2\left(n+2\right)-8⋮n+2\)
Vì \(2\left(n+2\right)⋮n+2\)( vì \(n\in Z\))
\(\Rightarrow8⋮n+2\)
\(\Leftrightarrow n+2\inƯ\left(8\right)\)( vì \(n\in Z\))
\(\Leftrightarrow n+2\in\left\{1;-1;2;-2;4;-4;8;-8\right\}\)
\(\Leftrightarrow n\in\left\{-1;-3;0;-4;2;-6;6;-10\right\}\)
a, n+2 chia hết cho n-3
Suy ra (n-3)+5 chia hết cho n-3
Suy ra 5 chia hết cho n-3 vì n-3 chia hết cho n-3
suy ra n-3 \(\in\)Ư(5)={-1;-5;1;5}
Ta có bảng giá trị
n-3 | -1 | -5 | 1 | 5 |
n | 2 | -2 | 4 | 8 |
Vậy n={2;-2;4;8}
b, ta có Ư(13)={-1;-13;1;13}
ta có bảng giá trị
x-3 | -1 | -13 | 1 | 13 |
x | 2 | -10 | 4 | 16 |
Vậy n={2;-10;4;16}
c, ta có Ư(111)={-1;-111;;-3;-37;1;111;3;37}
ta có bảng giá trị
x-2 | -1 | -111 | -3 | -37 | 1 | 3 | 111 | 37 |
x | 1 | -99 | -1 | -39 | 3 | 5 | 113 | 39 |
Vậy n={1;-99;-1;-39;3;5;113;39}
ta có:n+1 chia hết cho n+4
n+1 chia hết cho n+1
=>(n+1)-(n+4) chia hết cho (n+4)
=>n+1-n+4 chia hết cho n+4
=> -3 chia hết cho n+4
=>n+4 thuộc Ư(-3)={1;-1;3;-3}
rồi sau đó bạn lập bảng hoặc ghi chữ
\(3-2n⋮n+1\)
Ta có \(3-2n=-2-2n+5=-2\left(n+1\right)+5\)
Do \(-2\left(n+1\right)⋮n+1\Rightarrow3-2n⋮n+1\)
\(\Leftrightarrow n+1\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\)
\(\Leftrightarrow n\in\left\{0;-2;4;-6\right\}\)
...
\(\frac{3-2n}{n+1}\)
\(=\frac{-2n+3}{n+1}\)
\(=\frac{-2n-2+5}{n+1}\)
\(=\frac{2\left(n+1\right)+5}{n+1}\)
\(=-2+\frac{5}{n+1}\)
\(\Rightarrow\left(n+1\right)\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\)
\(\Rightarrow n\in\left\{0;-2;4;-6\right\}\)
\(-7⋮n+1\Leftrightarrow n-1\inƯ\left(-7\right)=\left\{\pm1;\pm7\right\}\)
\(\Leftrightarrow x\in\left\{2;0;8;-6\right\}\)
Vậy ..
Ta có n+2 chia hết cho n-3
=> (n-3)+5 chia hết cho n-3
Vì n-3 chia hết cho n-3 => 5 chia hết cho n-3
=> n-3 thuộc Ư(5)={5;1;-1;-5}
Ta có bảng sau:
=> n={8;4;2;-2}
Ta có n+2 chia hết cho n-3
=> (n-3)+5 chia hết cho n-3
Vì n-3 chia hết cho n-3 => 5 chia hết cho n-3
=> n-3 thuộc Ư(5)\(\in\){5;1;-1;-5}
Ta có bảng sau:
=> n\(\in\){8;4;2;-2}