cho đường tròn tâm o bán kính r đường kính AB. trên cùng nữa mặt phẳng bờ là đường thẳng AB kẽ tiếp tuyền Ax,By,M€(O,R). kẽ tiếp tuyến tại M cắt Ax, By ở E và F aCm: AE+BF=EF bCm AE x BF không đổi c Xác định vị trí M để diện tích AEFB là nhỏ nhất
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét (O) có
OM là bán kính
EF\(\perp\)OM tại M
Do đó: EF là tiếp tuyến của (O)
b: Xét (O) có
EM,EA là các tiếp tuyến
Do đó: EM=EA
Xét (O) có
FM,FB là các tiếp tuyến
Do đó: FM=FB
Ta có: EF=EM+MF
mà EM=EA và FM=FB
nên EF=EA+FB
a: Xét tứ giác OBDM có
góc OBD+góc OMD=180 độ
=>OBDM là tư giác nội tiếp
c: Xét ΔKOB và ΔKFE có
góc KOB=góc KFE
góc OKB=góc FKE
=>ΔKOB đồng dạng với ΔKFE
=>KO/KF=KB/KE
=>KO*KE=KB*KF
a: Xét (O) có
OM là bán kính
EF vuông góc OM tại M
Do đó: EF là tiếp tuyến của (O)
b: Xét (O) có
EM.EA là tiếp tuyến
nên EM=EA
Xét(O) có
FM,FB là tiếp tuyến
nên FM=FB
EF=EM+MF
=>EF=EA+FB
a: Xét (O) có
ΔACB nội tiếp
AB là đường kính
Do đó: ΔACB vuông tại C
Xét ΔADB vuông tại A có AC là đường cao
nên \(AD^2=DB\cdot DC\)
b: Xét (O) có
EC là tiếp tuyến
EA là tiếp tuyến
Do đó: EC=EA
=>ΔECA cân tại C
=>góc ECA=góc EAC
\(\Leftrightarrow90^0-\widehat{ECA}=90^0-\widehat{EAC}\)
hay \(\widehat{EDC}=\widehat{ECD}\)
=>ΔECD cân tại E
=>ED=EC
mà EC=EA
nên EA=ED
hay E là trung điểm của AD
a: Xét tứ giác ABDC có
AC//BD
góc CAB=90 độ
Do đó: ABDC là hình thang vuông
b: Xét (O) có
ΔAMB nội tiếp
AB là đường kính
Do đó: ΔAMB vuông tại M
c: Xét (O) có
CA,CM là tiêp tuyến
nên CA=CM
Xét (O) có
DM,DB là tiếp tuyến
nên DM=DB
CM+MD=CD
=>AC+BD=CD
a: Xét (O) có
CM,CA là các tiếp tuyến
Do đó: CM=CA và OC là phân giác của \(\widehat{MOA}\)
Xét (O) có
DM,DB là các tiếp tuyến
Do đó: DM=DB và OD là phân giác của góc MOB
Ta có: CD=CM+MD
mà CM=CA và DM=DB
nên CD=CA+DB
b: OC là phân giác của góc MOA
=>\(\widehat{MOA}=2\cdot\widehat{MOC}\)
OD là phân giác của góc MOB
=>\(\widehat{MOB}=2\cdot\widehat{MOD}\)
Ta có: \(\widehat{MOA}+\widehat{MOB}=180^0\)(hai góc kề bù)
=>\(2\cdot\left(\widehat{MOC}+\widehat{MOD}\right)=180^0\)
=>\(2\cdot\widehat{COD}=180^0\)
=>\(\widehat{COD}=90^0\)
c: Gọi N là trung điểm của CD
Vì ΔOCD vuông tại O
nên ΔOCD nội tiếp đường tròn đường kính CD
=>ΔCOD nội tiếp (N)
Xét hình thang ABDC có
O,N lần lượt là trung điểm của AB,CD
=>ON là đường trung bình của hình thang ABDC
=>ON//AC//BD
Ta có: ON//AC
AC\(\perp\)AB
Do đó: ON\(\perp\)AB
Xét (N) có
NO là bán kính
AB\(\perp\)NO tại O
Do đó: AB là tiếp tuyến của (N)
=>AB là tiếp tuyến của đường tròn đường kính CD
a: Xét (O) có
AE là tiếp tuyến
AM là tiếp tuyến
Do đó: AE=AM
Xét (O) có
FM là tiếp tuyến
FB là tiếp tuyến
Do đó: FM=FB
Ta có: FM+EM=EF
nên FE=AE+BF