cho f(x)=ax^2+bx+c
a;b;c thuộc tập hợp số nguyên ; biết f(x) chia hết cho 3
Chứng minh a;b;c chia hết cho 3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
HA HA HA HA HA HA HA HA ĐỒ NGU NHÉ THẬT RA MÌNH BIẾT CÂU TRẢ LỜI NÀY QUÁ DỄ DÀNG VỚI MÌNH VẬY MÀ BẠN CŨNG HỎI HẢ NGU QUÁ ĐI HOI
Đa thức \(g\left(x\right)=x^2+x-6\)có nghiệm \(\Leftrightarrow x^2+x-6=0\)
\(\Leftrightarrow x^2+2x-3x-6=0\Leftrightarrow x\left(x+2\right)-3\left(x+2\right)=0\)
\(\Leftrightarrow\left(x-3\right)\left(x+2\right)=0\Leftrightarrow\orbr{\begin{cases}x-3=0\\x+2=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=3\\x=-2\end{cases}}\)
Để đa thức f(x) = x3+ax2-bx+12 chia hết cho g(x) = x2+x-6 thì 3 và -2 cũng là hai nghiệm của đa thức x3+ax2-bx+12
Nếu x = 3 thì \(f\left(3\right)=27+9a-3b+12=0\)
\(\Leftrightarrow9a-3b=-39\Leftrightarrow3a-b=-13\)(1)
Nếu x = -2 thì \(f\left(-2\right)=-8+4a+2b+12=0\)
\(\Leftrightarrow4a+2b=-4\Leftrightarrow2a+b=-2\)(2)
Lấy (1) + (2), ta được: \(5a=-15\Leftrightarrow a=-3\)
\(\Rightarrow b=-2+3.2=4\)
Vậy a= -3; b = 4
x^2+1 x^3+ax^2+bx-2 x+a x^3 +x ax^2+(b-1)x-2 ax^2 +a (b-1)x -(a+2)
Để f(x) = x3+ax2+bx-2 chia hết cho g(x) =x2+1 thì \(\left(b-1\right)x-\left(a+2\right)=0\)
\(\Leftrightarrow\hept{\begin{cases}b-1=0\\a+2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}b=1\\a=-2\end{cases}}\)
f(x) = ax2 + bx + c.
Từ f(1) = f(-1) suy ra b = 0.
Do đó f(x) = ax2 + c, thỏa mãn f(x) = f(-x)
f(x) = ax2 + bx + c
f(1) = a + b + c
f(-1) = a - b + c
Vì f(1) = f(-1)
=> a + b + c = a - b + c
=> b = -b
=> 2b = 0
=> b = 0
Vậy f(x) = ax2 + bx + c = ax2 + c
f(-x) = a(-x)2 + 0 + c = ax2 + c
=> f(x) = f(-x)
Lời giải:
Ta có: \(f(x)=ax^2+bx+c\)
\(\Rightarrow \left\{\begin{matrix} f(x+3)=a(x+3)^2+b(x+3)+c\\ f(x+2)=a(x+2)^2+b(x+2)+c\\ f(x+1)=a(x+1)^2+b(x+1)+c\\ f(x)=ax^2+bx+c\end{matrix}\right.\)
\(\Rightarrow f(x+3)-3f(x+2)+3f(x+1)-f(x)\)
\(=[f(x+3)-f(x)]-3[f(x+2)-f(x+1)]\)
Có:
\(f(x+3)-f(x)=a(x+3)^2+b(x+3)+c-[ax^2+bx+c]\)
\(=a[(x+3)^2-x^2]+b(x+3-x)\)
\(=3a(2x+3)+3b(1)\)
Và: \(f(x+2)-f(x+1)=a[(x+2)^2-(x+1)^2]+b[(x+2)-(x+1)]\)
\(=a(2x+3)+b\)
\(\Rightarrow 3[f(x+2)-f(x+1)]=3a(2x+3)+3b(2)\)
Từ (1)(2) suy ra:
\(f(x+3)-3f(x+2)+3f(x+1)-f(x)=3a(2x+3)+3b-[3a(2x+3)+3b]=0\)