K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 12 2021

Kẻ phân giác IH của \(\widehat{BIC}\)

Ta có \(\widehat{ABC}+\widehat{ACB}=180^0-\widehat{BAC}=120^0\)

Mà BI,CI là phân giác \(\widehat{ABC};\widehat{ACB}\Rightarrow\widehat{IBC}+\widehat{ICB}=\dfrac{1}{2}\left(\widehat{ABC}+\widehat{ACB}\right)=60^0\)

Xét tam giác IBC: \(\widehat{BIC}=180^0-\left(\widehat{IBC}+\widehat{ICB}\right)=120^0\)

\(\Rightarrow\widehat{BIH}=\widehat{CIH}=\dfrac{1}{2}\widehat{BIC}=60^0\)

Lại có \(\widehat{BIE}=\widehat{DIC}=180^0-\widehat{BIC}=60^0\) (kề bù)

Do đó \(\widehat{BIH}=\widehat{CIH}=\widehat{BIE}=\widehat{DIC}\)

\(\left\{{}\begin{matrix}\widehat{BIH}=\widehat{BIE}\\BI\text{ chung}\\\widehat{IBE}=\widehat{IBH}\end{matrix}\right.\Rightarrow\Delta BEI=\Delta BHI\left(g.c.g\right)\\ \Rightarrow EI=HI\left(1\right)\\ \left\{{}\begin{matrix}\widehat{CIH}=\widehat{DIC}\\CI\text{ chung}\\\widehat{HIC}=\widehat{DIC}\end{matrix}\right.\Rightarrow\Delta CDI=\Delta CHI\left(g.c.g\right)\\ \Rightarrow DI=HI\left(2\right)\\ \left(1\right)\left(2\right)\Rightarrow IE=ID\)

5 tháng 12 2017

A B C D E I F
Do \(\widehat{BAC}=60^o\Rightarrow\widehat{ABC}+\widehat{ACB}=180^o-60^o=120^o\).
Suy ra \(\widehat{IBC}+\widehat{ICB}=\dfrac{1}{2}\left(\widehat{ABC}+\widehat{ACB}\right)=60^o\).
Suy ra \(\widehat{BIC}=180^o-\left(\widehat{IBC}+\widehat{ICB}\right)=120^o\).
Vì vậy \(\widehat{EIB}=\widehat{DIC}=180^o-120^o=60^o\).
Kẻ tia phân giác IF của góc BIC (F thuộc BC). Suy ra \(\widehat{BIF}=\widehat{FIC}=120^o:2=60^o\).
Xét tam giác EIB và tam giác FIB có:
BI chung.
\(\widehat{EBI}=\widehat{IBF}\)
\(\widehat{EIB}=\widehat{FIB}\)
Suy ra \(\Delta EIB=\Delta FIB\left(g.c.g\right)\).
Vì vậy IE = IF.
Chứng minh tương tự ta có ID = IF.
vì vậy ID = IE.

20 tháng 1 2021

cái chổ xét tam giác ghi lí do ra đc ko

 

a: Xét ΔABC có 

\(\widehat{A}+\widehat{ABC}+\widehat{ACB}=180^0\)

\(\Leftrightarrow2\cdot\left(\widehat{IBC}+\widehat{ICB}\right)=180^0-60^0=120^0\)

\(\Leftrightarrow\widehat{IBC}+\widehat{ICB}=60^0\)

\(\Leftrightarrow\widehat{BIC}=120^0\)