cho tam giác ABCvuông tại Avà AB=AC .Gọi K là trung điểm của BC
a Chứng minh tam giác AKC=tam giác AKB
b Chứng Minh góc AKC=90 độ
c Từ C vẽ đường thẳng vuông góc với BC và cắt AB tạiE CM EC songsongAK
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔAKB và ΔAKC có
AB=AC
AK chung
KB=KC
Do đó: ΔAKB=ΔAKC
a ) Xét \(\Delta AKB\) và \(\Delta AKC\) có :
AK : cạn chung
AB = AC ( gt)
BK = KC ( K là trung điểm của BC )
\(\Rightarrow\Delta AKB=\Delta AKC\left(c.g.c\right)\)
Ta có :
+ Góc AKB = AKC ( \(\Delta AKB=\Delta AKC\) )
Mà \(\widehat{AKB}+\widehat{AKC}=180^o\) ( kề bù )
\(\Rightarrow\widehat{AKB}=\widehat{AKC}=\frac{180^o}{2}=90^o\)
\(\Rightarrow AK\perp BC\)
b ) Vì :
\(\hept{\begin{cases}EC\perp BC\left(gt\right)\\AK\perp BC\left(cmt\right)\end{cases}}\)
\(\Rightarrow EC//AK\) ( tuef vuông góc đến song song )
d ) Vì \(EC\perp BC\left(gt\right)\)
\(\Rightarrow\widehat{BCE}=90^o\)
Vậy \(\widehat{BCE}=90^o\)
a,xet tam giac AKB va tam giac AKC co:
BK=CK(gt)
AK canh chung
AB=AC(gt)
=>tam giac AKB=tam giac AKC(c.c.c)
b,xet tam giacABC co:
AB=AC=>tam giac ABC can tai A
=>AK vua la duong trung truc, vua la duong cao
=>AK vuong goc voi BC
c,ta co: AK vuong goc voi BC, CE vuong goc voi BC
=>CK song song voi CE
Cho tam giác ABC vuông tại A có AB AC = . Gọi K là trung điểm của BC. 1) Chứng minh = AKB AKC . 2) Qua C vẽ đường thẳng vuông góc với BC cắt AB tại E . Tính số đo góc AEC.
a: Xét ΔAKB và ΔAKC có
AK chung
KB=KC
AB=AC
Do đó: ΔAKB=ΔAKC
b: EC vuông góc với CB
AK vuông góc với CB
Do dó: EC//AK
c: Xét ΔCEB vuông tại C có góc B=45 độ
nen ΔCEB vuông cân tại C
=>CA là phân giác của góc BCE
Mình không vẽ hình được, bạn tự vẽ hình nhé!
a/ Xét tam giác AKB và tam giác AKC
Có: BK=CK (K là trung điểm BC)
AK là cạnh chung (GT)
AB=AC (GT)
Vậy tam giác AKB= tam giác AKC ( c.c.c) \(\Rightarrow\)Góc AKB= Góc AKC mà hai góc kề bù, vậy ^AKB=^AKC=90 độ
Vậy AK vuông góc với BC
c/ Có CE vuông góc với BC (GT) và AK cũng vuông góc với BC (CMT)
\(\Rightarrow\)CE song song với AK (cùng vuông góc với đường thẳng thứ 3 là BC)
a: Xét ΔAKB và ΔAKC có
AK chung
KB=KC
AB=AC
Do đó: ΔAKB=ΔAKC