cho hai phân số a/b=c/d chứng minh rằng a/b+a=c/d+c
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : \(\dfrac{a}{b}=\dfrac{c}{d}\)
\(\Leftrightarrow\)\(\dfrac{a}{b}+1=\dfrac{c}{d}+1\)
\(\Leftrightarrow\)\(\dfrac{a+b}{b}=\dfrac{c+d}{d}\)(đpcm)
Đặt a/b=c/d=K
=>a=b.K ; c=d.K
Thay a=b.K ; c=d.K vào biểu thức ta có:
(a+b)/b=(b.K+b)/b=b.(K+1)/b=K+1 (1)
(c+d)/d=(d.K+d)/d=d(K+1)/d=K+1 (2)
Từ (1) và (2)=>Với a/b=c/d thì (a+b)/b=(c+d)/d
:)
- Ta có: \(\dfrac{a}{b}< \dfrac{c}{d}\) (gt)
=>\(ad< bc\)
=>\(ad+ab< bc+ab\)
=>\(a\left(b+d\right)< b\left(a+c\right)\)
=>\(\dfrac{a}{b}< \dfrac{a+c}{b+d}\) (1)
- Ta có: \(\dfrac{c}{d}>\dfrac{a}{b}\) (gt)
=>\(bc>ad\)
=>\(bc+cd>ad+cd\)
=>\(c\left(b+d\right)>d\left(a+c\right)\)
=>\(\dfrac{c}{d}>\dfrac{a+c}{b+d}\) (2)
- Từ (1) và (2) suy ra: \(\dfrac{a}{b}< \dfrac{a+c}{b+d}< \dfrac{c}{d}\)
Lời giải:
Có 44 số a,b,c,da,b,c,d và 33 số dư có thể xảy ra khi chia một số cho 33 là 0,1,20,1,2
Do đó áp dụng nguyên lý Dirichlet tồn tại ít nhất [43]+1=2[43]+1=2 số có cùng số dư khi chia cho 3
Không mất tổng quát giả sử đó là a,b⇒a−b⋮3a,b⇒a−b⋮3
⇒(b−a)(c−a)(d−a)(d−c)(d−b)(c−b)⋮3⇒(b−a)(c−a)(d−a)(d−c)(d−b)(c−b)⋮3
Mặt khác:
Trong 4 số a,b,c,da,b,c,d
Giả sử tồn tại hai số có cùng số dư khi chia cho 44 là a,ba,b
⇒a−b⋮4⇒(b−a)(c−a)(d−a)(d−c)(d−b)(c−b)⋮4⇒a−b⋮4⇒(b−a)(c−a)(d−a)(d−c)(d−b)(c−b)⋮4
Nếu a,b,c,da,b,c,d không có số nào có cùng số dư khi chia cho 4. Khi đó giả sử a,b,c,da,b,c,d có số dư khi chia cho 44 lần lượt là 0,1,2,30,1,2,3
⇒c−a⋮2;d−b⋮2⇒c−a⋮2;d−b⋮2
⇒(b−a)(c−a)(d−a)(d−c)(d−b)(c−b)⋮4⇒(b−a)(c−a)(d−a)(d−c)(d−b)(c−b)⋮4
Như vậy, tích đã cho vừa chia hết cho 3 vừa chia hết cho 4. Do đó no cũng chia hết cho 12
Cho 4 số nguyên phân biệt a,b,c,d. Chứng minh rằng : (a-b)(a-c)(a-d)(b-c)(b-d)(c-d) chia hết cho 12
Giải
Không mất tổng quát giả sử đó là a,b⇒a−b⋮3
⇒(b−a)(c−a)(d−a)(d−c)(d−b)(c−b)⋮3
Mặt khác:
Trong 4 số a,b,c,d
Giả sử tồn tại hai số có cùng số dư khi chia cho 4 là a,b
⇒a−b⋮4⇒(b−a)(c−a)(d−a)(d−c)(d−b)(c−b)⋮4
Nếu a,b,c,d không có số nào có cùng số dư khi chia cho 4. Khi đó giả sử a,b,c,d có số dư khi chia cho 4 lần lượt là 0,1,2,3
⇒c−a⋮2;d−b⋮2
⇒(b−a)(c−a)(d−a)(d−c)(d−b)(c−b)⋮4
Như vậy, tích đã cho vừa chia hết cho 3 vừa chia hết cho 4. Do đó no cũng chia hết cho 12
Ta có đpcm,
Đặt a/b=c/d=k =>a=kb c=kd Ta có : a/b+a=kb/b+kb=kb/b(k+1)=k/k+1 (1) c/d+c=kd/d+kd=kd/d(k+1)=k/k+1 (2) Từ (1) và (2) suy ra a/b+a=c/d+c