K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
2 tháng 1 2024

Lời giải:
Nếu $y\vdots 5$ thì $5^x=y^2+y+1$ chia 5 dư 1

$\Rightarrow x=0$

Khi đó: $y^2+y+1=5^0=1\Rightarrow y^2+y=0$

$\Rightarrow y(y+1)=0$. Mà $y$ là stn nên $y=0$

Nếu $y$ chia 5 dư 1. Đặt $y=5k+1$. Khi đó:

$y^2+y+1=(5k+1)^2+5k+1+1=25k^2+15k+3$ chia 5 dư 3
$\Rightarrow 5^x$ chia 5 dư 3 (vô lý -loại) 

Nếu $y$ chia 5 dư 2. Đặt $y=5k+2$, Khi đó:

$y^2+y+1=(5k+2)^2+5k+2+1=25k^2+25k+7$ chia 5 dư 2

$\Rightarrow 5^x$ chia 5 dư 2 (vô lý)

Nếu $y$ chia 5 dư 3. Đặt $y=5k+3$, Khi đó:

$y^2+y+1=(5k+3)^2+5k+3+1=25k^2+35k+13$ chia 5 dư 3

$\Rightarrow 5^x$ chia 5 dư 3 (vô lý)

Nếu $y$ chia 5 dư 4. Đặt $y=5k+4$, Khi đó:

$y^2+y+1=(5k+4)^2+5k+4+1=25k^2+45k+21$ chia 5 dư 1

$\Rightarrow 5^x$ chia 5 dư 1 $\Rightarrow x=0$

$\Rightarrow y^2+y+1=5^x=1\Rightarrow y^2+y=0$

$\Rightarrow y(y+1)=0\Rightarrow y=0$ (do $y$ là stn). Mà $y$ chia 5 dư 4 nên ô lý.

Vậy $(x,y)=(0,0)$

6 tháng 5 2023

2/x + y/3 = 2

=> 2/x = 2 - y/3

= 2/x = 6-y/3

=> x(6-y) = 2.3

x(6-y) = 6

Do x∈N => x >= 0. Để x(6-y) = 6 thì x > 0

Mà 6>0 => 6-y > 0

Mà y∈ N => 6-y ∈ N*

Ta có bảng:

x1236
6-y6321
y0345

Thử lại thỏa mãn.

Vậy (x,y) = (1,0); (2,3); (3,4); (6,5)

 

23 tháng 3 2022

THAM Khảo

Giải toán trên mạng - Giúp tôi giải toán - Hỏi đáp, thảo luận về toán học -  Học trực tuyến OLM

NV
23 tháng 3 2022

Xét trên tập số tự nhiên

- Với \(y=0\Rightarrow\) ko tồn tại x thỏa mãn

- Với \(y=1\Rightarrow\) ko tồn tại x thỏa mãn

- Với \(y=2\Rightarrow x=1\)

- Với \(y\ge2\Rightarrow2^y⋮8\)

\(\Rightarrow5^x-1⋮8\)

Nếu \(x\) lẻ \(\Rightarrow x=2k+1\Rightarrow5^x=5.25^k\equiv5\left(mod8\right)\) \(\Rightarrow5^x-1\equiv4\left(mod8\right)\) ko chia hết cho 8 (ktm)

\(\Rightarrow x\) chẵn \(\Rightarrow x=2k\)

\(\Rightarrow5^x=5^{2k}=25^k\equiv1\left(mod3\right)\)

\(\Rightarrow5^x-1\equiv0\left(mod3\right)\Rightarrow5^x-1⋮3\Rightarrow2^y⋮3\) (vô lý)

Vậy với \(y\ge3\) ko tồn tại x;y thỏa mãn

Có đúng 1 cặp thỏa mãn là \(\left(x;y\right)=\left(1;2\right)\)