Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ - Do M và N là hình chiếu của H lên AB, AC \(\Rightarrow\hat{AMH}=\hat{ANH}=\hat{A}=90\text{°}\)
Vậy: AMHN là hình chữ nhật (đpcm) (Tứ giác có 3 góc vuông là hình chữ nhật)
==========
b/ Từ câu a \(\Rightarrow AH=MN\)
Cho AB=a, AC=b
Xét △AHB và △ABC có:
- \(\hat{A}=\hat{AHB}=90\text{°}\)
- \(\hat{B}\text{ }chung\)
⇒ △HBA ∽ △ABC (g.g)
\(\Rightarrow\dfrac{AH}{AC}=\dfrac{AB}{BC}\Rightarrow AH=\dfrac{ab}{16}\)
Vậy: \(MN=\dfrac{ab}{16}\)
a: Xét tứ giác AMHN có
\(\widehat{AMH}=\widehat{ANH}=\widehat{NAM}=90^0\)
Do đó: AMHN là hình chữ nhật
b: Ta có: AMHN là hình chữ nhật
nên MN=AH
hay MN=4(cm)
a: Xét tứ giác AMHN có
\(\widehat{AMH}=\widehat{ANH}=\widehat{NAM}=90^0\)
Do đó: AMHN là hình chữ nhật
a: Xét tứ giác ADHE có
\(\widehat{ADH}=\widehat{AEH}=\widehat{EAD}=90^0\)
Do đó: ADHE là hình chữ nhật
b: BC=10cm
AH=4,8cm
BH=3,6cm
CH=6,4cm