\dfrac{1}{12} 121 + \dfrac{1}{12} 121 =
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tách biểu thức như sau:
\(\left(\dfrac{a}{9}+\dfrac{b}{12}+\dfrac{c}{6}+\dfrac{8}{abc}\right)+\left(\dfrac{a}{18}+\dfrac{b}{24}+\dfrac{2}{ab}\right)+\left(\dfrac{b}{16}+\dfrac{c}{8}+\dfrac{2}{bc}\right)+\left(\dfrac{a}{9}+\dfrac{c}{6}+\dfrac{2}{ca}\right)+\left(\dfrac{13a}{18}+\dfrac{13b}{24}\right)+\left(\dfrac{13b}{48}+\dfrac{13c}{24}\right)\)
Đầu tiên em phải dự đoán được điểm rơi (các cặp a;b;c đẹp sao cho \(ab=12\) và \(bc=8\), có các bộ là \(\left(6;2;4\right);\left(3;4;2\right)\)
Sau đó thay 2 bộ kia vào P xem cái nào bằng \(\dfrac{121}{12}\) thì nó đúng (ở đây là 3;4;2)
Khi có điểm rơi, bây giờ chỉ cần tính toán và ghép theo AM-GM để khử tử- mẫu
Cần ghép \(\dfrac{8}{abc}+\dfrac{a}{x}+\dfrac{b}{y}+\dfrac{c}{z}\) (AM-GM 4 số sẽ khử hết biến)
\(\dfrac{8}{abc}=\dfrac{8}{3.4.2}=\dfrac{1}{3}\)
Do đó \(\dfrac{3}{x}=\dfrac{4}{y}=\dfrac{2}{z}=\dfrac{1}{3}\Rightarrow x=9;y=12;z=6\)
Hay ta có bộ đầu tiên: \(\dfrac{a}{9}+\dfrac{b}{12}+\dfrac{c}{6}+\dfrac{8}{abc}\)
Tương tự cho các biến dưới mẫu còn lại, phần dư cuối cùng sẽ ghép cặp a với b (tận dụng \(ab\ge12\)) và b với c, nó sẽ tự đủ
`#3107.101107`
a)
\(x+x+\dfrac{1}{2}\times\dfrac{2}{5}+x+\dfrac{8}{10}=121\\3x+\dfrac{1}{5}+\dfrac{4}{5}=121\\ 3x+1=121\\ 3x=121-1\\ 3x=120\\ x=40 \)
Vậy, `x = 40`
b)
\(\dfrac{12+x}{42}=\dfrac{5}{6}\\ \dfrac{12+x}{42}=\dfrac{35}{42}\\ \dfrac{12+x}{42}-\dfrac{35}{42}=0\\ \dfrac{12+x-35}{42}=0\\ \dfrac{x-\left(35-12\right)}{42}=0\\ \dfrac{x-23}{42}=0\\ x-23=0\\ x=23\)
Vậy,` x = 23.`
a: \(x+x+\dfrac{1}{2}\cdot\dfrac{2}{5}+x+\dfrac{8}{10}=121\)
=>\(3x+\dfrac{1}{5}+\dfrac{4}{5}=121\)
=>3x+1=121
=>3x=120
=>x=40
b: \(\dfrac{x+12}{42}=\dfrac{5}{6}\)
=>\(x+12=42\cdot\dfrac{5}{6}=35\)
=>x=35-12=23
\(a,\left(\dfrac{7}{20}+\dfrac{11}{15}-\dfrac{15}{12}\right):\left(\dfrac{11}{20}-\dfrac{26}{45}\right).\)
\(=\left(\dfrac{21}{60}+\dfrac{44}{60}-\dfrac{75}{60}\right):\left(\dfrac{99}{180}-\dfrac{104}{180}\right).\)
\(=\left(\dfrac{65}{60}-\dfrac{75}{60}\right):\left(-\dfrac{5}{180}\right).\)
\(=-\dfrac{10}{60}:\left(-\dfrac{5}{180}\right).\)
\(=-\dfrac{1}{6}:\left(-\dfrac{1}{36}\right).\)
\(=-\dfrac{1}{6}.\left(-36\right).\)
\(=\dfrac{-1.\left(-36\right)}{6}=\dfrac{36}{6}=6.\)
Vậy......
\(b,\dfrac{5-\dfrac{5}{3}+\dfrac{5}{9}-\dfrac{5}{27}}{8-\dfrac{8}{3}+\dfrac{8}{9}-\dfrac{8}{27}}:\dfrac{15-\dfrac{15}{11}+\dfrac{15}{121}}{16-\dfrac{16}{11}+\dfrac{16}{121}}.\)
\(=\dfrac{5\left(1-\dfrac{1}{3}+\dfrac{1}{9}-\dfrac{1}{27}\right)}{8\left(1-\dfrac{1}{3}+\dfrac{1}{9}-\dfrac{1}{27}\right)}:\dfrac{15\left(1-\dfrac{1}{11}+\dfrac{1}{121}\right)}{16\left(1-\dfrac{1}{11}+\dfrac{1}{121}\right)}.\)
\(=\dfrac{5}{8}:\dfrac{15}{16}.\)
\(=\dfrac{5}{8}.\dfrac{16}{15}=\dfrac{5.16}{8.15}=\dfrac{1.2}{1.3}=\dfrac{2}{3}.\)
Vậy......
c, (làm tương tự câu b).
~ Học tốt!!! ~
a: \(=\dfrac{1}{3}\cdot\dfrac{1}{3}\cdot\dfrac{-17}{18}\cdot\dfrac{14}{17}=\dfrac{-14}{18\cdot9}=\dfrac{-14}{162}=\dfrac{-7}{81}\)
b: \(=\dfrac{12}{4}+\dfrac{35}{11}\cdot\dfrac{121}{245}=3+\dfrac{11}{7}=\dfrac{32}{7}\)
a: \(=\dfrac{15}{135}\cdot\dfrac{-17}{18}\cdot\dfrac{14}{17}=\dfrac{1}{9}\cdot\dfrac{-7}{9}=\dfrac{-7}{81}\)
b: \(=3+\dfrac{35}{11}\cdot\dfrac{121}{245}=3+\dfrac{11}{7}=\dfrac{32}{7}\)
Dự đoán điểm rơi: x=3 ; y =4;z =2
ÁP dụng AM-Gm ta có:
\(\dfrac{8}{xyz}+\dfrac{x}{9}+\dfrac{y}{12}+\dfrac{z}{6}\ge4\sqrt[4]{\dfrac{8}{9.12.6}}=\dfrac{4}{3}\)
\(\dfrac{2}{xy}+\dfrac{x}{18}+\dfrac{y}{24}\ge3\sqrt[3]{\dfrac{2}{18.24}}=\dfrac{1}{2}\)
\(\dfrac{2}{yz}+\dfrac{y}{16}+\dfrac{z}{8}\ge3\sqrt[3]{\dfrac{2}{16.8}}=\dfrac{3}{4}\)
\(\dfrac{2}{xz}+\dfrac{z}{6}+\dfrac{x}{9}\ge3\sqrt[3]{\dfrac{2}{6.9}}=1\)
\(\dfrac{13}{18}x+\dfrac{13}{24}y\ge2\sqrt{\dfrac{169}{18.24}xy}\ge\dfrac{13}{3}\)
\(\dfrac{13}{24}z+\dfrac{13}{48}y\ge2\sqrt{\dfrac{169}{24.48}.yz}\ge\dfrac{13}{6}\)
Cộng tất cả theo vế ,ta thu được Đpcm.
Tổng quát:
\(\dfrac{1}{\left(n+1\right)\sqrt{n}+n\sqrt{n+1}}\)\(=\dfrac{1}{\sqrt{n\left(n+1\right)}\left(\sqrt{n+1}+\sqrt{n}\right)}\)
\(=\dfrac{\sqrt{n+1}-\sqrt{n}}{\sqrt{n\left(n+1\right)}}\)\(=\dfrac{1}{\sqrt{n}}-\dfrac{1}{\sqrt{n+1}}\)
\(\Rightarrow S=\dfrac{10}{11}\)
Ta có công thức tổng quát như sau:
\(\dfrac{1}{\left(n+1\right)\sqrt{n}+n\sqrt{n+1}}\)
\(=\dfrac{\left(n+1\right)\sqrt{n}-n\sqrt{n+1}}{\left[\left(n+1\right)\sqrt{n}+n\sqrt{n+1}\right]\left[\left(n+1\right)\sqrt{n}-n\sqrt{n+1}\right]}\)
\(=\dfrac{\left(n+1\right)\sqrt{n}-n\sqrt{n+1}}{n\left(n+1\right)^2-n^2\left(n+1\right)}\)
\(=\dfrac{\sqrt{n}}{n}-\dfrac{\sqrt{n+1}}{n+1}\)
\(=\dfrac{1}{\sqrt{n}}+\dfrac{1}{\sqrt{n+1}}\)
Áp dụng vào tổng S ta có:
\(S=\dfrac{1}{2\sqrt{1}+1\sqrt{2}}+\dfrac{1}{3\sqrt{2}+2\sqrt{3}}+...+\dfrac{1}{121\sqrt{120}+120\sqrt{121}}\)
\(S=\dfrac{1}{\sqrt{1}}-\dfrac{1}{\sqrt{2}}+\dfrac{1}{\sqrt{2}}-\dfrac{1}{\sqrt{3}}+...+\dfrac{1}{\sqrt{120}}+\dfrac{1}{\sqrt{121}}\)
\(S=1-\dfrac{1}{\sqrt{121}}=1-\dfrac{1}{11}=\dfrac{10}{11}\)
Tìm x:
a, x+30%=-1,3
<=> x+0,3=-1,3
<=> x=-1,3-0,3
<=> x=-1,6
Vậy x=-1,6
b, 0,5x-\(\dfrac{2}{3}x\) =\(\dfrac{7}{12}\)
<=>\(\dfrac{-1}{6}x\)=\(\dfrac{7}{12}\)
<=> x=\(\dfrac{-7}{2}\)
Vậy x=\(\dfrac{-7}{2}\)
\(\left(3x-\dfrac{5}{12}\right)^2-\dfrac{121}{64}=0\)
\(\left(3x-\dfrac{5}{12}\right)^2\) \(=0+\dfrac{121}{64}\)
\(3x-\dfrac{5}{12}\) \(=\sqrt{\dfrac{121}{64}}=\dfrac{11}{8}\)
\(3x\) \(=\dfrac{11}{8}+\dfrac{5}{12}=\dfrac{33+10}{24}=\dfrac{43}{24}\)
\(x\) \(\dfrac{3.43}{24}=\dfrac{43}{8}\)
\(S=\sum\limits^{121}_2\left(\dfrac{1}{x\sqrt{\left(x-1\right)}+\left(x-1\right)\sqrt{x}}\right)\)
\(S=0,9090909091\)
toán lớp 6 ông ơi
cái gì toán lớp sáu mà thế