Cho A là một số chính phương có bốn chữ số,biết rằng hai chữ số đầu và hai chữ số cuối của A là giống nhau.Vậy A=
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
7744 chính xác luôn cô giáo mình sửa rùi
nếu giải ra fai xét t/h dài lắm bn à (mà toán lớp 6 mà)
.+giả sử aabb=n^2
<=>a.10^3+a.10^2+b.10+b=n^2
<=>11(100a+b)=n^2
=>n^2 chia hết cho 11
=>n chia hết cho 11
do n^2 có 4 chữ số nên
32<n<100
=>n=33,n=44,n=55,...n=99
thử vào thì n=88 là thỏa mãn
vậy số đó là 7744
Đặt số A là \(\overline{aabb}\)\(=n^2\) \(a,b\in N;\)\(1\le a\le9\)\(;0\le b\le9\)
\(\Rightarrow10^3a+10^2a+10b+b=n^2\)\(\Leftrightarrow11\left(100a+b\right)=n^2\)\(\Leftrightarrow11\left(99a+a+b\right)=n^2\) (1).
Do đó \(99a+a+b\) chia hết cho 11 nên \(a+b\) chia hết cho 11. Vậy, \(a+b=11\)
Thay \(a+b=11\) vào (1) ta được \(11\left(99a+11\right)=n^2=11^2\left(9a+1\right)\) . Do đó \(9a+1\) phải là số chính phương.
Thử với \(a=1,2,3,...,9\) chỉ có \(a=7\) thỏa \(9a+1=9.7+1=64=8^2\) là số chính phương. Vậy, \(a=7\)
Mà \(a+b=11\Rightarrow b=11-a=11-7=4\) Vậy số A cần tìm là \(7744\).
+giả sử aabb=n^2
<=>a.10^3+a.10^2+b.10+b=n^2
<=>11(100a+b)=n^2
=>n^2 chia hết cho 11
=>n chia hết cho 11
do n^2 có 4 chữ số nên
32<n<100
=>n=33,n=44,n=55,...n=99
thử vào thì n=88 là thỏa mãn
vậy số đó là 7744
Gọi số cần tìm là \(\overline{aabb}=n^2\)
(\(1\le a\le9;0\le b\le9;a,b\in n\))
Ta có
\(n^2=11\left(100a+b\right)=11\left(99a+a+b\right)\left(1\right)\)
Xét thấy \(\overline{aabb}\) chia hết cho 11
=> a+b chia hết cho 11
Mà \(1\le a+b\le18\)
=> a+b=11 (2)
Thay (2) vào (1) ta có
\(n^2=11^2\left(9a+1\right)\)
=> 9a+1 phải là số chính phương
Thử a=1;2;3;....;9 ta thấy chỉ có 7 thỏa mãn vì 9x7+1=64=82
=>b=4
Vậy số cần tìm là 7744
Giả sử aabb=n^2
<=>a.10^3+a.10^2+b.10+b=n^2
<=>11(100a+b)=n^2
=>n^2 chia hết cho 11
=>n chia hết cho 11
do n^2 có 4 chữ số nên
32<n<100
=>n=33,n=44,n=55,...n=99
thử vào thì n=88 là thỏa mãn
vậy số đó là 7744
Gia su aabb = n2
<=> a.103+a.102+b.10+b=n2
<=> 11(100a+b)=n2
=> n2 chia hết cho 11
=> n chia hết cho 11
Do n2 co 4 chu so nen 32<n<100
=> n=33 ; n=44; ....n=99
Thử vào thì n=88 là thỏa mãn
vậy A=7744