Cho tam giac abc can tai a.ve ah vuong goc voi bc tai h.cho ah=8 cm,bh=6 cm
a,tinh ab,ac
b,chung minh tam giac abh=tam giac ach
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Hình bạn tự vẽ nhé ! ( Bạn thay các chữ cái bằng kí tự nhé !)
a) Do AH vuông góc với BC nên:
Góc AHB= Góc AHC=90 độ
Ta có: Góc BAH= 90 độ- góc B(1)
Góc CAH=90 độ- góc C(2)
Lại dó: Góc B=Góc C( Do tam giác ABC cân tại A)(3)
Kết hợp (1), (2), (3), ta suy ra: Góc BAH= Góc CAH
Xét tam giác ABH và tam giác ACH, có:
Góc BAH= Góc CAH( CM trên)
Chung AH
Góc AHB=Góc AHC( Đều bằng 90 độ)
=> Tam giác ABH=Tam giác ACH( G-c-g)
Khi đó: HB=HC( Cặp cạnh tương ứng)
-------> ĐPCM
a) Xét \(\Delta\)vuông ABH và \(\Delta\)vuông ACH, ta có:
AH là cạnh chung
AB=AC (gt)
Do đó: \(\Delta\)ABH=\(\Delta\)ACH (c.h-c.g.v)
\(\Rightarrow\) BH=HC (2 cạnh tương ứng)
Vậy BH=HC=BC:2=3cm
b) Áp dụng định lý PI-TA-GO vào \(\Delta\)vuông ABH, ta có:
\(AH^2+BH^2=AB^2\)
\(AH^2+3^2=5^2\)
\(AH^2=16\)
\(AH=4cm\)
c) Ta có: \(\widehat{A}_1=\widehat{A_2}\) (\(\Delta ABH=\Delta ACH\))
\(\Rightarrow\) AH là đường phân giác. (*)
Ta lại có: BH=CH (c/m trên)
\(\Rightarrow\) AH là đường trung tuyến. (**)
Từ (*) và (**), ta có:
AH thoả mãn 2 trong 4 loại đường.
\(\Rightarrow\) AH vừa là đường trung trực, trung tuyến, đường cao, phân giác
a: Xét ΔABH và ΔACH có
AB=AC
góc BAH=góc CAH
AH chung
Do đó: ΔABH=ΔACH
b: ΔBAC cân tại A
mà AH là phân giác
nên AH vuông góc với BC
c: Xét ΔADH vuông tại D và ΔAEH vuông tại E có
AH chung
góc DAH=góc EAH
Do đó: ΔADH=ΔAEH
=>AD=AE
Xét ΔABC có AD/AB=AE/AC
nên DE//BC
TRÔNG MÌNH VẬY THÔI NHƯNG LÀ FAN RUỘT CỦA SẾP TÙNG ĐẤY !
SKY ZÔ KẾT BẠN NHA !!!!!!!!!!!
VÌ SẾP TÙNG MUÔN NĂM !!!!!!!
Chỗ câu hỏi của người ta cmt gì liên quan quá vậy @SN ?
a) Xét \(\Delta ABH\)và \(\Delta ACH\)có:
\(AH\): chung
\(\widehat{AHB}=\widehat{AHC}=90\)độ (gt)
\(AB=AC\left(gt\right)\)
\(\Rightarrow\Delta ABH=\Delta ACH\left(c.g.c\right)\)
b) Chứng minh câu a \(\Rightarrow HB=HC\)(hai cạnh tương ứng)
\(\Rightarrow\widehat{BAH}=\widehat{CAH}\)(hai góc tương ứng)
c) Xét \(\Delta ADH\)và \(\Delta AEH\)có:
\(\widehat{BAH}=\widehat{CAH}\left(cmt\right)\)
\(AH\): chung
\(\widehat{ADH}=\widehat{AEH}=90\)độ (gt)
\(\Rightarrow\Delta ADH=\Delta AEH\left(g.c.g\right)\)
\(\Rightarrow DA=EA\)(hai cạnh tương ứng)
\(\Rightarrow\Delta ADE\)cân tại \(A\)
a) △ABC cân tại A ⇒ AB = AC
△ABH vuông tại H có \(AB^2=AH^2+HB^2\\ \Rightarrow AB=AC=\sqrt{6^2+8^2}=10\left(cm\right)\)
b) △ABH và △ACH có:
\(\widehat{AHB}=\widehat{AHC}=90^o\\ AH:\text{cạnh chung}\\ AB=AC\)
\(\Rightarrow\text{△ABH = △ACH (cạnh huyền - cạnh góc vuông)}\)
a) Áp dụng định lí Pytago vào ΔABH vuông tại H, ta được:
\(AB^2=AH^2+BH^2\)
\(\Leftrightarrow AB^2=8^2+6^2=100\)
hay AB=10(cm)
Ta có: AB=AC(ΔABC cân tại A)
mà AB=10cm(cmt)
nên AC=10cm
Vậy: AB=10cm; AC=10cm
b) Xét ΔABH vuông tại H và ΔACH vuông tại H có
AB=AC(ΔABC cân tại A)
AH chung
Do đó: ΔABH=ΔACH(cạnh huyền-cạnh góc vuông)