Cho C thuộc AB, đường tròn (o) đường kính AC, đường tròn (O') đường kính BC, D và E là 2 tiếp điểm của 2 tiếp tuyến chung ngoài của (O) và (O'). AD giao EB tại M, Ex vuông góc EA, By vuông góc BA, Ex giao By tại N
cm: D,C,N thẳng hàng
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cô hướng dẫn nhé nguyen van vu :)
a. Ta có góc COD = COM + MOD = \(\frac{AOM}{2}+\frac{BOM}{2}=\frac{180}{2}=90^o\)
b. Dễ thấy E là trung điểm CD, O là trung điểm AB nên OE song song AC. Vậy OE vuông góc AB.
c. Gọi MH là đường thẳng vuông góc AB, Ta chứng minh BC, AD đều cắt MH tại trung điểm của nó.
Gọi I là giao của AM và BD. Đầu tiên chứng minh ID = DB. Thật vậy, góc MID=IMD (Cùng bằng cung AM/2)
nên ID =MD, mà MD=DB nên ID=DB.
Gọi K là giao của MH và AD.
Theo Talet , \(\frac{MK}{DI}=\frac{AK}{AD}=\frac{KH}{BD}\Rightarrow MK=KH\)
Tương tự giao điểm của BC với MH cũng là trung điểm MH.
Tóm lại N trùng K hay MN vuông góc AB.
a: Xét (O) có
ΔACB nội tiếp
AB là đường kính
Do đó: ΔACB vuông tại C
=>AC\(\perp\)CB tại C
=>AC\(\perp\)DB tại C
Xét (O) có
EA,EC là tiếp tuyến
Do đó: EA=EC và OE là phân giác của \(\widehat{AOC}\)
EA=EC
=>E nằm trên đường trung trực của AC(1)
OA=OC
=>O nằm trên đường trung trực của AC(2)
Từ (1) và (2) suy ra OE là đường trung trực của AC
=>OE\(\perp\)AC
b: OE\(\perp\)AC
AC\(\perp\)BD
Do đó: OE//BD
Xét ΔDAB vuông tại A có AC là đường cao
nên \(BC\cdot BD=BA^2=4R^2\)
c: \(\widehat{EAC}+\widehat{EDC}=90^0\)(ΔACD vuông tại C)
\(\widehat{ECA}+\widehat{ECD}=\widehat{ACD}=90^0\)
mà \(\widehat{EAC}=\widehat{ECA}\)
nên \(\widehat{EDC}=\widehat{ECD}\)
=>ED=EC
mà EC=EA
nên EA=ED
d: Xét ΔOCF và ΔOBF có
OC=OB
CF=BF
OF chung
Do đó: ΔOCF=ΔOBF
=>\(\widehat{OCF}=\widehat{OBF}=90^0\)
=>FB là tiếp tuyến của (O)
e: ΔOBF=ΔOCF
=>\(\widehat{BOF}=\widehat{COF}\)
=>OF là phân giác của \(\widehat{COB}\)
=>\(\widehat{COB}=2\cdot\widehat{COF}\)
\(\widehat{EOF}=\widehat{EOC}+\widehat{FOC}\)
\(=\dfrac{1}{2}\left(\widehat{COA}+\widehat{COB}\right)\)
\(=\dfrac{1}{2}\cdot180^0=90^0\)
=>ΔEOF vuông tại O
mot hof low 6 thoi
Ex và By nằm mặt phẳng bờ chứa đoạn nào