Cho p/s A = n+1/n-3 ( n $$ Z ; n khác 3 )
Tìm n để A là p/s tối giản
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) a. Câu hỏi của Hàn Vũ Nhi - Toán lớp 8 - Học toán với OnlineMath
\(A=\frac{n+1}{n-3}\)điều kiện: n-3 khác 0\(\Rightarrow\)n khác 3
để \(A=\frac{n+1}{n-3}\)là số nguyên\(\Rightarrow\)n+1\(⋮\)n-3
\(\Rightarrow\)3(n+1)\(⋮\)n-3
\(\Rightarrow\)3n+3\(⋮\)n-3 (1)
mà n-3\(⋮\)n-3
\(\Rightarrow\)3(n-3)\(⋮\)n-3
\(\Rightarrow\)3n-9\(⋮\)n-3 (2)
từ (1)và(2)\(\Rightarrow\)(3n+3)-(3n-9)\(⋮\)n-3
3n+3-3n+9\(⋮\)n-3
12\(⋮\)n-3
n-3\(\in\)Ư12={\(\pm1,\pm2,\pm3,\pm4,\pm6,\pm12\)}
bạn tự thử nhé
Đề sai rồi! Sửa đề: Cho \(S_1=\dfrac{b}{a}x+\dfrac{c}{a}z...\)
Giải:
Ta có:
\(S_1+S_2+S_3=\left(\dfrac{b}{a}x+\dfrac{c}{a}z\right)+\left(\dfrac{a}{b}x+\dfrac{c}{b}y\right)\)\(+\left(\dfrac{a}{c}z+\dfrac{b}{c}y\right)\)
\(=\left(\dfrac{b}{a}x+\dfrac{a}{b}x\right)+\left(\dfrac{c}{b}y+\dfrac{b}{c}y\right)+\left(\dfrac{c}{a}z+\dfrac{a}{c}z\right)\)
\(=\left(\dfrac{b}{a}+\dfrac{a}{b}\right)x+\left(\dfrac{c}{b}+\dfrac{b}{c}\right)y+\left(\dfrac{c}{a}+\dfrac{a}{c}\right)z\)
Dễ thấy: \(\left\{{}\begin{matrix}\dfrac{b}{a}+\dfrac{a}{b}\ge2\\\dfrac{c}{b}+\dfrac{b}{c}\ge2\\\dfrac{c}{a}+\dfrac{a}{c}\ge2\end{matrix}\right.\)
\(\Rightarrow S_1+S_2+S_3\ge2x+2y+2z\)
\(=2\left(x+y+z\right)=2.1008=2016\)
Vậy \(S_1+S_2+S_3\ge2016\) (Đpcm)
Cho phan so A = n+1/n-3 (nCZ)
a) Tim cac gia tri cua n de A la phan so
b) Tim n de A co gia tri nguyen
a) Để A = \(\frac{n+1}{n-3}\) là phân số thì \(n-3\ne0\)hay\(n\ne3\)
b) Để A là số nguyên thì:
\(n+1⋮n-3\)
mà \(n-3⋮n-3\)
\(\Rightarrow\left(n+1\right)-\left(n-3\right)⋮n-3\) hay\(4⋮n-3\)
\(\Rightarrow n-3\inƯ_{\left(4\right)}\)
\(\Rightarrow n\in\){4;2;5;1;7;-1}
Giải
a) Các số n thuộc tập hợp Z để A là phân số là:
\(N=\left\{4;5;6;7;8;9;...\right\}\)
b) Vì số nguyên là số chia hết cho 1 và 9 nó , ngoài các không chia hết cho số nào khác. Nếu chia hết cho số nào khác thì số đó gọi là hợp số
Dựa vào số n đã liệt kê ở trên: N = {4 ; 5 ; 6 ; 7 ; 8 ; 9 ...}
Ta thử lần lượt các số:
\(\frac{4+1}{4-3}=\frac{5}{1}=5\)
Thử lần lượt tới số 9 thì ngưng sau đó áp dụng tính chất: Số nguyên là số chia hết cho 1 và 9 nó , ngoài các không chia hết cho số nào khác. Nếu chia hết cho số nào khác thì số đó gọi là hợp số. Đã nêu ở trên.
Vậy .............................
Bạn tth làm cũng không được đúng lắm :'(
\(a)\) Để \(A\) là phân số thì \(n\ne3\) ( vì nếu \(n=3\) thì \(3-3=0\) phân số có mẫu bằng 0 thì ko phải phân số )
\(b)\) Để \(A\) là số nguyên thì : \(\left(n+1\right)⋮\left(n-3\right)\)
Ta có :
\(n+1=n-3+4\) chia hết cho \(n-3\) \(\Rightarrow\) \(4⋮\left(n-3\right)\) \(\Rightarrow\) \(\left(n-3\right)\inƯ\left(4\right)\)
Mà \(Ư\left(4\right)=\left\{1;-1;2;-2;4;-4\right\}\)
Suy ra : ( lập bảng )
\(n-3\) | \(1\) | \(-1\) | \(2\) | \(-2\) | \(4\) | \(-4\) |
\(n\) | \(4\) | \(2\) | \(5\) | \(1\) | \(7\) | \(-1\) |
Vậy \(n\in\left\{4;2;5;1;7;-1\right\}\)