Bài 2: Tìm x nguyên
a) 20 – [42 + (x – 6)] = 90
b) (x + 3).(2x – 4) = 0
c) 1000:[30 + (2x – 6)] = 32 + 42 và x ∈ N
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(2,\)
\(a,20-\left[42+\left(x-6\right)\right]=90\)
\(\Rightarrow20-42-x+6-90=0\)
\(\Rightarrow x=-106\)
Vậy: \(x=-106\)
\(b,\left(x+3\right)\left(2x-4\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x+3=0\\2x-4=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=-3\\x=2\end{matrix}\right.\)
Vậy: \(x\in\left\{-3;2\right\}\)
\(c,1000:\left[30+\left(2x-6\right)\right]=32+42\left(x\in N\right)\)
\(\Rightarrow1000:\left(30+2x-6\right)=74\)
\(\Rightarrow1000:\left(24+2x\right)=74\)
\(\Rightarrow24+2x=\dfrac{500}{37}\)
\(\Rightarrow2x=-\dfrac{388}{37}\)
\(\Rightarrow x=-\dfrac{194}{37}\)
Mà \(x\in N\)
\(\Rightarrow x\in\varnothing\)
Vậy: \(x\in\varnothing\)
1000 : [30 + (2x - 6)] = 32 + 42
= 1000 : [ 30 + (2x-6)] = 9 + 16 = 25
= 30 + (2x - 6) = 1000 : 25 = 40
= 2x - 6 = 40 - 30 = 10
2x = 10 + 6 = 16
⇒ 2x = 24
⇒ x = 4
\(1000:\text{[}30+\left(2^x-6\right)\text{]}=3^2+4^2\)
\(1000:\text{[}30+\left(2^x-6\right)\text{]}=9+16\)
\(1000:\text{[}30+\left(2^x-6\right)\text{]}=25\)
\(\text{ }30+\left(2^x-6\right)\text{ }=40\)
\(2^x-6=10\)
\(2^x=16\)
\(=>2^x=2^4\)
\(=>x=4\)
\(1000:\left[30+\left(2^x-6\right)\right]=3^2+4^2\\ 1000:\left[30+\left(2^x-6\right)\right]=9+16\\ 1000:\left[30+\left(2^x-6\right)\right]=25\\ 30+\left(2^x-6\right)=1000:25\\ 30+\left(2^x-6\right)=40\\ 2^x-6=40-30\\ 2^x-6=10\\ 2^x=10+6\\ 2^x=16\\ 2^x=2^4\\ x=4\)
1: Ta có: \(20-2\left(x+4\right)=4\)
\(\Leftrightarrow2\left(x+4\right)=16\)
\(\Leftrightarrow x+4=8\)
hay x=4
5: Ta có: \(\left(x+1\right)^3=27\)
\(\Leftrightarrow x+1=3\)
hay x=2
a) x(x - 5) - 4x + 20 = 0
\(\Leftrightarrow\) x(x - 5) - (4x + 20)
\(\Leftrightarrow\) x(x - 5) - 4(x - 5) = 0
\(\Leftrightarrow\) (x - 5)(x - 4)
Khi x - 5 = 0 hoặc x - 4 = 0
\(\Leftrightarrow\) x = 5 \(\Leftrightarrow\) x = 4
Vậy S = \(\left\{5;4\right\}\)
b) x(x + 6) - 7x - 42 = 0
\(\Leftrightarrow\) x(x + 6) - (7x - 42) = 0
\(\Leftrightarrow\) x(x + 6) - 7(x + 6) = 0
\(\Leftrightarrow\) (x + 6)(x - 7) = 0
Khi x - 6 = 0 hoặc x - 7 = 0
\(\Leftrightarrow\) x = 6 \(\Leftrightarrow\) x = 7
Vậy S = \(\left\{6;7\right\}\)
c) x3 - 5x2 - x + 5 = 0
\(\Leftrightarrow\) (x3 - 5x2) - (x + 5) = 0
\(\Leftrightarrow\) x2 (x - 5) - (x - 5) = 0
\(\Leftrightarrow\) (x - 5)(x2 - 1) = 0
\(\Leftrightarrow\) (x - 5)(x - 1)(x + 1) = 0
Khi x - 5 = 0 hoặc x - 1 = 0 hoặc x + 1 = 0
\(\Leftrightarrow\) x = 5 \(\Leftrightarrow\) x = 1 \(\Leftrightarrow\) x = -1
Vậy S = \(\left\{5;1;-1\right\}\)
d) 4x2 - 25 - (2x - 5)(3x + 7) = 0
\(\Leftrightarrow\) (2x)2 - 52 - (2x - 5)(3x + 7) = 0
\(\Leftrightarrow\) (2x - 5)(2x + 5) - (2x - 5)(3x + 7) = 0
\(\Leftrightarrow\) (2x - 5) \([\left(2x+5\right)-\left(3x+7\right)]\) = 0
\(\Leftrightarrow\) (2x - 5) ( 2x + 5 - 3x + 7) = 0
\(\Leftrightarrow\) (2x - 5)( -x + 12) = 0
Khi 2x - 5 = 0 hoặc -x + 12 = 0
\(\Leftrightarrow\) 2x = 5 \(\Leftrightarrow\) -x = -12
\(\Leftrightarrow\) x = \(\dfrac{5}{2}\) \(\Leftrightarrow\) x = 12
Vậy S = \(\left\{\dfrac{5}{2};12\right\}\)
e) x3 + 27 + (x + 3)(x - 9) = 0
\(\Leftrightarrow\) x3 - 33 + (x + 3)(x - 9) = 0
\(\Leftrightarrow\) (x - 3)(x2 - 3x + 9) + (x + 3)(x - 9) = 0
\(\Leftrightarrow\) (x - 3) \(\left[\left(x^2-3x+9\right)+\left(x-9\right)\right]\) = 0
\(\Leftrightarrow\) (x - 3) ( x2 - 3x + 9 + x - 9) = 0
\(\Leftrightarrow\) (x - 3)(x2 - 2x) = 0
\(\Leftrightarrow\) (x - 3)x(x - 2)
Khi x - 3 = 0 hoặc x = 0 hoặc x - 2 = 0
\(\Leftrightarrow\) x = 3 \(\Leftrightarrow\) x = 2
Vậy S = \(\left\{3;0;2\right\}\)
Chúc bạn học tốt
a) Ta có: \(x\left(x-5\right)-4x+20=0\)
\(\Leftrightarrow\left(x-5\right)\left(x-4\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=5\\x=4\end{matrix}\right.\)
b) Ta có: \(x\left(x+6\right)-7x-42=0\)
\(\Leftrightarrow x\left(x+6\right)-7\left(x+6\right)=0\)
\(\Leftrightarrow\left(x+6\right)\left(x-7\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-6\\x=7\end{matrix}\right.\)
a) ĐKXĐ: \(x\notin\left\{0;2\right\}\)
Ta có: \(\dfrac{x+2}{x-2}-\dfrac{1}{x}=\dfrac{2}{x\left(x-2\right)}\)
\(\Leftrightarrow\dfrac{x\left(x+2\right)}{x\left(x-2\right)}-\dfrac{x-2}{x\left(x-2\right)}=\dfrac{2}{x\left(x-2\right)}\)
Suy ra: \(x^2+2x-x+2-2=0\)
\(\Leftrightarrow x^2+x=0\)
\(\Leftrightarrow x\left(x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\left(loại\right)\\x=-1\left(nhận\right)\end{matrix}\right.\)
Vậy: S={-1}
Bài 1:
a) \(\Rightarrow3x^2+3x-2x^2-4x+x+1=0\)
\(\Rightarrow x^2=-1\left(VLý\right)\Rightarrow S=\varnothing\)
b) \(\Rightarrow\left(x-2020\right)\left(2x-1\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=2020\\x=\dfrac{1}{2}\end{matrix}\right.\)
c) \(\Rightarrow\left(x-10\right)\left(x+2\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=10\\x=-2\end{matrix}\right.\)
d) \(\Rightarrow\left(x+4\right)^2=0\Rightarrow x=-4\)
e) \(\Rightarrow\left(x+6\right)\left(x-7\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=-6\\x=7\end{matrix}\right.\)
f) \(\Rightarrow\left(5x-4\right)\left(5x+4\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{4}{5}\\x=-\dfrac{4}{5}\end{matrix}\right.\)
Bài 2:
a) \(\Rightarrow3x\left(x^2-4\right)=0\Rightarrow3x\left(x-2\right)\left(x+2\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x=2\\x=-2\end{matrix}\right.\)
b) \(\Rightarrow x\left(x-2\right)+5\left(x-2\right)=0\Rightarrow\left(x-2\right)\left(x+5\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=2\\x=-5\end{matrix}\right.\)
\(2,\)
\(a,20-\left[4^2+\left(x-6\right)\right]=90\)
\(\Rightarrow20-16-x+6=90\)
\(\Rightarrow10-x=90\)
\(\Rightarrow x=-80\)
Vậy: \(x=-80\)
\(b,\left(x+3\right)\left(2x-4\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x+3=0\\2x-4=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=-3\\x=2\end{matrix}\right.\)
Vậy: \(x\in\left\{-3;2\right\}\)
\(c,1000:\left[30+\left(2^x-6\right)\right]=3^2+4^2\left(x\in N\right)\)
\(\Rightarrow1000:\left(30+2^x-6\right)=25\)
\(\Rightarrow24+2^x=40\)
\(\Rightarrow2^x=16\)
\(\Rightarrow x=4\)
Vậy: \(x=4\)
:))))