K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) Xét ΔBAC có

BM là đường phân giác ứng với cạnh AC(gt)

nên \(\dfrac{AM}{MC}=\dfrac{AB}{BC}\)(Tính chất đường phân giác của tam giác)(1)

Xét ΔBAC có

CN là đường phân giác ứng với cạnh AB(gt)

nên \(\dfrac{AN}{NB}=\dfrac{AC}{BC}\)(Tính chất đường phân giác của tam giác)(2)

Ta có: ΔABC cân tại A(gt)

nên AB=AC(Hai cạnh bên)(3)

Từ (1), (2) và (3) suy ra \(\dfrac{AN}{NB}=\dfrac{AM}{MC}\)

Xét ΔABC có

N∈AB(gt)

M∈AC(gt)

\(\dfrac{AN}{NB}=\dfrac{AM}{MC}\)(cmt)

Do đó: NM//BC(Định lí Ta lét đảo)

24 tháng 3 2022

Ta có:\(\widehat{MBC}=\widehat{NCB}\) ( 2 tia phân giác của 2 góc bằng nhau )

=> Tam giác KBC cân

=> KB = KC

Xét tam giác MBC và tam giác NCB, có:

BC: cạnh chung

\(\widehat{MBC}=\widehat{NCB}\)

^B = ^C

Vậy tam giác MBC = tam giác NCB ( g.c.g )

=> BM = CN

Mà KB = KC

=> KM = KN

=> Tam giác KMN cân tại K

24 tháng 3 2022

thankss!

a: Xét ΔAMB vuông tại M và ΔANC vuông tại N có 
AB=AC

\(\widehat{BAM}\) chung

Do đó: ΔAMB=ΔANC

Suy ra: AM=AN

b: Xét ΔNCB vuông tại N và ΔMBC vuông tại M có 

BC chung

\(\widehat{NBC}=\widehat{MCB}\)

Do đó: ΔNCB=ΔMBC

Suy ra: \(\widehat{IBC}=\widehat{ICB}\)

=>ΔIBC cân tại I

=>IB=IC

Xét ΔABI và ΔACI có

AB=AC

AI chung

BI=CI

Do đó: ΔABI=ΔACI

Suy ra: \(\widehat{BAI}=\widehat{CAI}\)

hay AI là tia phân giác của góc BAC

25 tháng 10 2016

thua

4 tháng 7 2018

các bạn giúp mình với

mai tớ kiểm tra rồi

31 tháng 8 2020

A B C I N M 1 2 1 2 1 2

Ta có: BI là phân giác \(\widehat{ABC}\Rightarrow\widehat{B_1}=\widehat{B_2}\)

          CI là phân giác \(\widehat{ACB}\Rightarrow\widehat{C_1}=\widehat{C_2}\) 

\(MN//BC\Rightarrow\widehat{I_1}=\widehat{B_2}\),\(\widehat{I_2}=\widehat{C_2}\)

+) Vì \(\widehat{B_1}=\widehat{B_2}\);\(\widehat{I_1}=\widehat{B_2}\)

\(\Rightarrow\widehat{B_1}=\widehat{I_1}\Rightarrow\Delta MBI\)cân tại M

\(\Rightarrow MB=MI\)

+) Vì \(\widehat{C_1}=\widehat{C_2}\);\(\widehat{I_1}=\widehat{C_2}\)

\(\Rightarrow\widehat{C_1}=\widehat{I_2}\Rightarrow\Delta NCI\)Cân tại N

\(\Rightarrow NC=NI\)

Ta có: \(MN=MI+NI\)

mà \(MB=MI\);\(NC=NI\)

\(\Rightarrow MN=MB+NC\left(đpcm\right)\)

30 tháng 11 2023

Sửa đề: Vuông góc với AC,AP tại N,P

a: Xét ΔBPI vuông tại P và ΔBMI vuông tại M có

BI chung

\(\widehat{PBI}=\widehat{MBI}\)

Do đó: ΔBPI=ΔBMI

=>BP=BM

b: Xét ΔIMC vuông tại M và ΔINC vuông tại N có

CI chung

\(\widehat{MCI}=\widehat{NCI}\)

Do đó: ΔIMC=ΔINC

=>IM=IN

c: ΔMCI=ΔNCI

=>MC=CN

BP+CN

=BM+MC

=BC

d: ΔBPI=ΔBMI

=>IP=IM

mà IM=IN

nên IP=IN

Xét ΔAPI vuông tại P và ΔANI vuông tại N có

AI chung

IP=IN

Do đó: ΔAPI=ΔANI

=>\(\widehat{PAI}=\widehat{NAI}\)

=>AI là phân giác của \(\widehat{BAC}\)