K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 2 2016

(X-3)^2 >/ 0 với mọi x

(y+5)^2 >/ 0 với mọi y

=>(x-3)^2+(y+5)^2 >/0 với mọi x, y

=>(x-3)^2+(y+5)^2-2016 >/ -2016 với mọi x,y

=>min B=-2016

Dấu "=" xảy ra <=>(x-3)^2=0<=>x-3=0<=>x=3

(y+5)^2=0<=>y=-5

 vậy...

16 tháng 8 2016

Câu 1:

a)A=|x+1|+2016

       Vì |x+1|\(\ge\)0

           Suy ra:|x+1|+2016\(\ge\)2016

     Dấu = xảy ra khi x+1=0

                                x=-1

 Vậy MinA=2016 khi x=-1

b)B=2017-|2x-\(\frac{1}{3}\)|

       Vì -|2x-\(\frac{1}{3}\)|\(\le\)0

             Suy ra:2017-|2x-\(\frac{1}{3}\)|\(\le\)2017

    Dấu = xảy ra khi \(2x-\frac{1}{3}=0\)

                               \(2x=\frac{1}{3}\)

                                \(x=\frac{1}{6}\)

Vậy Max B=2017 khi \(x=\frac{1}{6}\)

c)C=|x+1|+|y+2|+2016

         Vì |x+1|\(\ge\)0

              |y+2|\(\ge\)0

     Suy ra:|x+1|+|y+2|+2016\(\ge\)2016

                Dấu = xảy ra khi x+1=0;x=-1

                                           y+2=0;y=-2

Vậy MinC=2016 khi x=-1;y=-1

d)D=-|x+\(\frac{1}{2}\)|-|y-1|+10

      =10-|x+\(\frac{1}{2}\)|-|y-1|

             Vì      -|x+\(\frac{1}{2}\)|\(\le\)0

                         -|y-1|  \(\le\)0

    Suy ra:      10-|x+\(\frac{1}{2}\)|-|y-1|    \(\le\)10

Dấu = xảy ra khi \(x+\frac{1}{2}=0;x=-\frac{1}{2}\)

                           y-1=0;y=1

          Vậy Max D=10 khi x=\(-\frac{1}{2}\);y=1           



 

16 tháng 8 2016

Bài 1:

a)Ta thấy: \(\left|x+1\right|\ge0\)

\(\Rightarrow\left|x+1\right|+2016\ge0+2016=2016\)

\(\Rightarrow A\ge2016\)

Dấu = khi x=-1

Vậy MinA=2016 khi x=-1

b)Ta thấy:\(\left|2x-\frac{1}{3}\right|\ge0\)

\(\Rightarrow-\left|2x-\frac{1}{3}\right|\le0\)

\(\Rightarrow2017-\left|2x-\frac{1}{3}\right|\le2017-0=2017\)

\(\Rightarrow B\le2017\)

Dấu = khi x=1/6

Vậy Bmin=2017 khi x=1/6

c)Ta thấy:\(\begin{cases}\left|x+1\right|\\\left|y+2\right|\end{cases}\ge0\)

\(\Rightarrow\left|x+1\right|+\left|y+2\right|\ge0\)

\(\Rightarrow\left|x+1\right|+\left|y+2\right|+2016\ge0+2016=2016\)

\(\Rightarrow D\ge2016\)

Dấu = khi x=-1 và y=-2

Vậy MinD=2016 khi x=-1 và y=-2

d)Ta thấy:\(\begin{cases}-\left|x+\frac{1}{2}\right|\\-\left|y-1\right|\end{cases}\le0\)

\(\Rightarrow-\left|x+\frac{1}{2}\right|-\left|y-1\right|\le0\)

\(\Rightarrow-\left|x+\frac{1}{2}\right|-\left|y-1\right|+10\le0+10=10\)

\(\Rightarrow D\le10\)

Dấu = khi x=-1/2 và y=1

Vậy MaxD=10 khi x=-1/2 và y=1

4 tháng 12 2016

chtt đi bạn

10 tháng 9 2016

LÀM dùm bn 1 câu khó nhất nhé;

B = (x-1)2 + ( y -2)2 +2016 -1 -4

GTNN B = 2011

10 tháng 9 2016

A=3(x^2-2x-1/3)

=3(x-1)^2 -4/3

ta có (x-1)^2 >= 0

suy ra a>= 0-4/3

dấu bằng xảy ra khi x-1=0

                                x=1

vậy giá trị nhỏ nhất của A là -4/3 khi x=1

8 tháng 1 2017

a) Để Bmin thì GTTĐ của x + 1 bé nhất . Suy ra GTTĐ của x + 1 = 0

Suy ra x + 1 = 0 .  Vậy x = -1 thì Bmin

b) Để Cmin thì GTTĐ của x - 3 ; (y+1)2 bé nhất

Suy ra GTTĐ của x - 3 = 0 và ( y+1)2 =0

+ Suy ra (y+1)=0 . Suy ra y+1=0.Suy ra y = -1

Vậy x = 3 , y = -1 thì Cmin

8 tháng 1 2017

Thanks nhe

4 tháng 1 2017

Ymin=2022

4 tháng 1 2017

Áp dụng bất đẳng thức !aI+!b!>=!a+b! đẳng thức khi a và b trái dấu

\(y\ge!\left(x^2+x+2016\right)-\left(x^2+x-6\right)!=2022\) 

đẳng thức khi

x^2+x+2016>0 hển nhiên

(x^2+x-6)<0 khi 

\(-3\le0\le2\)