a) x²-16x=0
b) 9x²+6x+4y²-8y+5=0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Phương trình tương đương (3x)2+2.3x+1+(2y)2−2.2x.2+4=0(3x)2+2.3x+1+(2y)2−2.2x.2+4=0 ⇒(3x+1)2+(2y−2)2=0⇒(3x+1)2+(2y−2)2=0 Do (3x+1)2≥0(3x+1)2≥0 và (2y−2)2≥0(2y−2)2≥0 ∀x,y∀x,y ⇒(3x+1)2+(2y−2)2≥0⇒(3x+1)2+(2y−2)2≥0 Dấu "=" xảy ra ⇔⇔ ⇒{(3x+1)2=0(2y−2)2=0⇒{(3x+1)2=0(2y−2)2=0 ⇒{3x+1=02y−2=0⇒{3x+1=02y−2=0 ⇒⎧⎨⎩x=−13y=1
hok tốt
\(9x^2+6x+4y^2-8y+5=0\)
\(\Leftrightarrow9x^2+6x+1+4\left(y^2-2y+1\right)=0\)
\(\Leftrightarrow\left(3x+1\right)^2+4\left(y-1\right)^2=0\)
\(\Leftrightarrow\hept{\begin{cases}3x+1=0\\y-1=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=-\frac{1}{3}\\y=1\end{cases}}\)
vậy.......
a)
Theo đề ta có:
\(\dfrac{3x}{5}=\dfrac{2y}{4}\) và \(6x+4y=15\)
Áp dung tính chất của dãy tỉ số bằng nhau ta có:
\(\dfrac{3x}{5}=\dfrac{2y}{4}=\dfrac{6x}{10}=\dfrac{4y}{8}=\dfrac{6x+4y}{10+8}=\dfrac{15}{18}=\dfrac{5}{6}\)
\(\dfrac{3x}{5}=\dfrac{5}{6}\Rightarrow3x=\dfrac{5}{6}.5=\dfrac{25}{6}\Rightarrow x=\dfrac{25}{6}:3=\dfrac{25}{18}\)
\(\dfrac{2y}{4}=\dfrac{5}{6}\Rightarrow2y=\dfrac{5}{6}.4=\dfrac{10}{3}\Rightarrow y=\dfrac{10}{3}:2=\dfrac{5}{3}\)
Vậy \(x=\dfrac{25}{18}\) ; \(y=\dfrac{5}{3}\)
b)
Theo đề ta có:
\(\dfrac{3x}{5}=\dfrac{4y}{3}=\dfrac{5z}{7}\) và \(9x+8y+5z=10\)
Áp dung tính chất của dãy tỉ số bằng nhau ta có:
\(\dfrac{3x}{5}=\dfrac{4y}{3}=\dfrac{5z}{7}=\dfrac{9x}{15}=\dfrac{8y}{6}=\dfrac{9x+8y+5z}{15+6+7}=\dfrac{10}{28}=\dfrac{5}{14}\)
\(\dfrac{3x}{5}=\dfrac{5}{14}\Rightarrow3x=\dfrac{5}{14}.5=\dfrac{25}{14}\Rightarrow x=\dfrac{25}{14}:3=\dfrac{25}{42}\)
\(\dfrac{4y}{3}=\dfrac{5}{14}\Rightarrow4y=\dfrac{5}{14}.3=\dfrac{15}{14}\Rightarrow y=\dfrac{15}{14}:4=\dfrac{15}{56}\)
\(\dfrac{5z}{7}=\dfrac{5}{14}\Rightarrow5z=\dfrac{5}{14}.7=\dfrac{5}{2}\Rightarrow z=\dfrac{5}{2}:5=\dfrac{1}{2}\)
Vậy \(x=\dfrac{25}{42}\) ; \(y=\dfrac{15}{56}\) ; \(z=\dfrac{1}{2}\)
1. Ta có:
\(x^3-9x^2+27x-26=x^3-2x^2-7x^2+14x+13x-26\)
\(=x^2\left(x-2\right)-7x\left(x-2\right)+13\left(x-2\right)=\left(x-2\right)\left(x^2-7x+13\right)\)
Thay x = 23, ta có: \(C=\left(23-2\right)\left(23^2-7.23+13\right)=8001\)
2.
a) \(x^2+4y^2+6x-12y+18=0\)
\(\Leftrightarrow\left(x^2-6x+9\right)+\left(4y^2-12y+9\right)=0\)
\(\Leftrightarrow\left(x-3\right)^2+\left(2y-3\right)^2=0\)
Mà \(\left(x-3\right)^2\ge0\) với mọi x, \(\left(2y-3\right)^2\ge0\) với mọi y
\(\Rightarrow\left(x-3\right)^2=0\Leftrightarrow x-3=0\Leftrightarrow x=3\)và \(\left(2y-3\right)^2=0\Leftrightarrow2y-3=0\Leftrightarrow y=\frac{3}{2}\)
Vậy \(\left(x,y\right)=\left(3;\frac{3}{2}\right)\)
b) \(2x^2+2y^2+2xy-10x-8y+41=0\)
\(\Leftrightarrow\left(x^2+2xy+y^2\right)+\left(x^2-10x+25\right)+\left(y^2-8y+16\right)=0\)
\(\Leftrightarrow\left(x+y\right)^2+\left(x-5\right)^2+\left(y-4\right)^2=0\)
.....................................
Rồi giải tương tự như trên
\(a,\Leftrightarrow x\left(x+9\right)=0\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-9\end{matrix}\right.\\ b,\Leftrightarrow\left(x+4-4\right)\left(x+4+4\right)=0\\ \Leftrightarrow x\left(x+8\right)=0\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-8\end{matrix}\right.\\ c,\Leftrightarrow x\left(x-4\right)\left(x+4\right)=0\Leftrightarrow\left[{}\begin{matrix}x=0\\x=4\\x=-4\end{matrix}\right.\\ d,\Leftrightarrow\left(x-5\right)^2=0\Leftrightarrow x=5\)
a) \(\Leftrightarrow x\left(x+9\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x=-9\end{matrix}\right.\)
b) \(\Leftrightarrow x\left(x+8\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x=-8\end{matrix}\right.\)
c) \(\Leftrightarrow x\left(x-4\right)\left(x+4\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x=4\\x=-4\end{matrix}\right.\)
d) \(\Leftrightarrow\left(x-5\right)^2=0\\ \Leftrightarrow x=5\)
a) \(6x^2-72x=0\)
\(6x\left(x-12\right)=0\)
\(6x=0\) hoặc \(x-72=0\)
*) \(6x=0\)
\(x=0\)
*) \(x-12=0\)
\(x=12\)
Vậy \(x=0;x=12\)
b) \(-2x^4+16x=0\)
\(-2x\left(x^3-8\right)=0\)
\(-2x=0\) hoặc \(x^3-8=0\)
*) \(-2x=0\)
\(x=0\)
*) \(x^3-8=0\)
\(x^3=8\)
\(x=2\)
Vậy \(x=0;x=2\)
c) \(x\left(x-5\right)-\left(x-3\right)^2=0\)
\(x^2-5x-x^2+6x-9=0\)
\(x-9=0\)
\(x=9\)
d) \(\left(x-2\right)^3-\left(x-2\right)\left(x^2+2x+4\right)=0\)
\(x^3-6x^2+12x-8-x^3+8=0\)
\(-6x^2+12x=0\)
\(-6x\left(x-2\right)=0\)
\(-6x=0\) hoặc \(x-2=0\)
*) \(-6x=0\)
\(x=0\)
*) \(x-2=0\)
\(x=2\)
Vậy \(x=0;x=2\)
*vn:vô nghiệm.
a. \(\left(x^2-2\right)\left(x^2+x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2-2=0\\x^2+x+1=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\left(x-\sqrt{2}\right)\left(x+\sqrt{2}\right)=0\\\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}=0\left(vn\right)\end{matrix}\right.\)
\(\Leftrightarrow x=\pm\sqrt{2}\)
-Vậy \(S=\left\{\pm\sqrt{2}\right\}\).
b. \(16x^2-8x+5=0\)
\(\Leftrightarrow16x^2-8x+1+4=0\)
\(\Leftrightarrow\left(4x-1\right)^2+4=0\) (vô lí)
-Vậy S=∅.
c. \(2x^3-x^2-8x+4=0\)
\(\Leftrightarrow x^2\left(2x-1\right)-4\left(2x-1\right)=0\)
\(\Leftrightarrow\left(2x-1\right)\left(x^2-4\right)=0\)
\(\Leftrightarrow\left(2x-1\right)\left(x-2\right)\left(x+2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{2}\\x=\pm2\end{matrix}\right.\)
-Vậy \(S=\left\{\dfrac{1}{2};\pm2\right\}\).
d. \(3x^3+6x^2-75x-150=0\)
\(\Leftrightarrow3x^2\left(x+2\right)-75\left(x+2\right)=0\)
\(\Leftrightarrow3\left(x+2\right)\left(x^2-25\right)=0\)
\(\Leftrightarrow3\left(x+2\right)\left(x+5\right)\left(x-5\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-2\\x=\pm5\end{matrix}\right.\)
-Vậy \(S=\left\{-2;\pm5\right\}\)
a.
\(x^2-16x=0\)
\(\Leftrightarrow x\left(x-16\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=16\end{matrix}\right.\)
b.
\(9x^2+6x+4y^2-8y+5=0\)
\(\Leftrightarrow\left(9x^2+6x+1\right)+\left(4y^2-8y+4\right)=0\)
\(\Leftrightarrow\left(3x+1\right)^2+\left(2y-2\right)^2=0\)
\(\Leftrightarrow\left[{}\begin{matrix}3x+1=0\\2x-2=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=-\dfrac{1}{3}\\x=1\end{matrix}\right.\)
\(a,x^2-16x=0\)
\(\Leftrightarrow x\left(x-4\right)\left(x+4\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x-4=0\\x+4=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=4\\x=-4\end{matrix}\right.\)
\(b,9x^2+6x+4y^2-8y+5=0\)
\(\Leftrightarrow\left(9x^2+6x+1\right)+4\left(y^2-2y+1\right)=0\)
\(\Leftrightarrow\left(3x+1\right)^2+4\left(y-1\right)^2=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(3x+1\right)^2=0\\4\left(y-1\right)^2=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=-\dfrac{1}{3}\\y=1\end{matrix}\right.\)