K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
14 tháng 11 2023

Lời giải:

Ta thấy: $(x-1)^2\geq 0$ với mọi $x$

$(y+2)^2\geq 0$ với mọi $y$

$\Rightarrow A=(x-1)^2+4(y+2)^2+2021\geq 0+4.0+2021=2021$
Vậy $A_{\min}=2021$. Giá trị đạt được khi $x-1=y+2=0$

$\Rightarrow x=1; y=-2$

20 tháng 6 2020

Đặt \(A=\left|x-2018\right|+\left|x-2019\right|+\left|x-2020\right|+\left|x-2021\right|\)

Ta có: \(\hept{\begin{cases}\left|x-2021\right|=\left|2021-x\right|\\\left|x-2020\right|=\left|2020-x\right|\end{cases}}\)

Ta lại có: \(\hept{\begin{cases}\left|x-2018\right|+\left|2021-x\right|\ge\left|x-2018+2021-x\right|=3\\\left|x-2019\right|+\left|2020-x\right|\ge\left|x-2019+2020-x\right|=1\end{cases}}\)

 \(\Rightarrow\left|x-2018\right|+\left|x-2019\right|+\left|x-2020\right|+\left|x-2021\right|\ge1+3=4\)

 \(\Rightarrow A_{min}=4\)

Dấu '=' xảy ra khi: \(\hept{\begin{cases}\left(x-2018\right).\left(2021-x\right)\ge0\\\left(x-2019\right).\left(2020-x\right)\ge0\end{cases}}\)

                        \(\Rightarrow\hept{\begin{cases}2018\le x\le2021\\2019\le x\le2020\end{cases}}\)\(\Rightarrow2018\le x\le2020\)

Vậy \(A_{min}=4\)\(\Leftrightarrow\)\(2018\le x\le2020\)

Nếu các bạn chưa hiểu chỗ suy ra ở chỗ dấu bằng xảy ra thì bạn hãy lập bảng xét dấu nhé ^_^

@#@@# Chúc bn hok tốt #@#@!

8 tháng 4 2023

- Bài này phải có điều kiện \(x>0\) thì mới làm được nhé bạn.

9 tháng 4 2023

À mình cảm ơn bạn nhá mình cũng vừa mới xem lại đề cô gửi thì mình thấy có điều kiện x>0 thật mình cảm ơn bạn nhiều nhá 

NV
6 tháng 1 2024

\(xy-2x+y=1\)

\(\Leftrightarrow xy-2x+y-2=1-2\)

\(\Leftrightarrow x\left(y-2\right)+y-2=-1\)

\(\Leftrightarrow\left(y-2\right)\left(x+1\right)=-1\)

Ta có bảng:

y-2-11
x+11-1
y13
x0-2

Vậy \(\left(x;y\right)=\left(0;1\right);\left(-2;3\right)\)

6 tháng 1 2024

Ui anh ơi! 

NV
14 tháng 9 2021

\(A=\left(a+b\right)^3-3ab\left(a+b\right)+ab\left(a+b\right)\)

\(=1-3ab+ab=1-2ab\)

\(=1-2a\left(1-a\right)=2a^2-2a+1\)

\(=\dfrac{1}{2}\left(4a^2-4a+1\right)+\dfrac{1}{2}=\dfrac{1}{2}\left(2a-1\right)^2+\dfrac{1}{2}\ge\dfrac{1}{2}\)

\(\Rightarrow A_{min}=\dfrac{1}{2}\) khi \(a=b=\dfrac{1}{2}\)

AH
Akai Haruma
Giáo viên
8 tháng 3 2023

Lời giải:
$x^4\geq 0$ với mọi $x$

$\Rightarrow x^4+1\geq 1$

$\Rightarrow (x^4+1)^2\geq 1$

$\Rightarrow (x^4+1)^2+2021\geq 1+2021=2022$

Vậy GTNN của biểu thức là $2022$. Giá trị này đạt tại $x=0$

17 tháng 10 2021

\(M=2021+\left(x-2022\right)^{2022}\ge2021\forall x\)

Dấu '=' xảy ra khi x=2022

17 tháng 10 2021

bạn có thể lý giải chi tiết từng bước đc ko?

1 tháng 1 2022

Tham khảo: