Chứng minh rằng:
(abc+bca+cab) chia hết cho(a+b+c)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
(abc+bca+cab)
=100a+10b+c+100b+10c+a+100c+10a+b
=111a+111b+111c
=111(a+b+c) chia hết cho a, b, c-> Điều phải chứng minh
(abc+bca+cab)
=100a+10b+c+100b+10c+a+100c+10a+b
=111a+111b+111c
=111(a+b+c) chia hết a+b+c
abc + bca + cab
= 100a + 10b + c + 100b + 10c + a + 100c + 10a + b
= 111a + 111b + 111c
= 111(a + b + c)
= 3.37(a + b + c) ⋮ 3
Vậy (abc + bca + cab) ⋮ 3
có : abc + cba +cab : hết 111
100 a +10b+1c+100b+10c+1a+100c+10b+1a
=(100 a +10b+1c) + (100b+10c+1a) + ( 100c+10b+1a )
= 111 abc + 111bca+111cab : hết 111
= 111 . ( abc + bca + cab ) : hết 111
vậy , abc + bca + cab : hết cho 111
mất rất nhìu thời gian TT TT
abc + bca + cab
= 100a + 10b + c + 100b + 10c + a + 100c + 10a + b
= (100a + a + 10a) + (10b + 100b + b) + (c + 10c + 100c)
= 111a + 111b + 111c
= 111(a + b + c)
= 37.3(a + b + c) \(⋮\) 37 (đpcm)
ta có:abc+bca+cab=111.a
Vi 111 chia het cho 7 nen abc+bac+cab
k đ nha
đặt A = abc = ( 102 . a + 10 . b + c ) \(⋮\)37
\(\Rightarrow\)10A = ( 103 . a + 102 . b + 10c ) \(⋮\)37
10A = 102 . b + 10 . c + a + 999a = bca + 999a
vì 999a = 37 . 27a \(⋮\)37 ; 10A \(⋮\)37
suy ra : bca \(⋮\)37
tương tự ta có : 10bca \(⋮\)37, 999b \(⋮\)37
suy ra : cab \(⋮\)37
Vì chia hết cho 37 chỉ cần tổng các chữ số chẳng hạn như 3 ; 9.
=>abc chia hết cho 37 thì cả bca và cab chia hết cho 7.
abc+bca+cab=100a+10b+c+100b+10c+a+100c+10a+b=111a+111b+111c=37.3a+37.3b=37.3c=37(3a+3b+3c)
Vậy abc+bac+cab chia hết cho 37
a) xyxyxy = xy . 10101 =xy . 7 .1443 => xyxyxy \(⋮\)7
b) xyyx = x.1000 + y.100 + y.10 + x = x.1001 + y.110
Vi` 1001\(⋮\) 11 => x.1001 \(⋮\)11
Vi` 110 \(⋮\)11 => y.110\(⋮\)11
=> x.1001 + y . 110\(⋮\)11 => xyyx \(⋮\)11
c) abc + bca + cab = a.100 + b.10 + c + b.100 + c.10 + a + c.100 + a.10 + b = a.111 + b.111 + c.111 = ( a + b + c ).111
Ma` 111\(⋮\)37 => ( a + b + c) \(⋮\)37 => abc + bca + cab \(⋮\)37
Ta có : abc + bca + cab = (100a + 10b + c) + (100b + 10c + a) + (100c + 10a + b)
= (100a + a + 10a) + (10b + 100b + b) + (c + 10c + 100c) = 111a + 111b + 111c = 111(a + b + c)
Vì 111(a + b + c) chia hết cho a + b + c nên abc + bca + cab chia hết cho a + b + c.