K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 2 2019

a, dễ tự làm 

b, xét tam giác CAB và tam giác DAB có : AB chung

AC = AD (gt)

góc CAB = góc DAB = 90

=> tam giác CAB = tam giác DAB (2cgv) 

=> góc CBA = góc DBA (đn)

xét tam giác AFB và tam giác AEB có : AB chung

góc AFB = góc AEB = 90

=>  tam giác AFB = tam giác AEB (ch - gn)

B A C D H E

a)Vì BD là tia phân giác của\(\widehat{ABC}\)

\(\Rightarrow\widehat{ABD}=\widehat{DBE}\)

Xét \(\Delta ABD\)và \(\Delta EBD\)có :

\(\widehat{BAD}=\widehat{BED}\left(=90^o\right)\)

BD là cạnh chung

\(\widehat{ABD}=\widehat{DBE}\)

\(\Rightarrow\Delta ABD=\Delta EBD\)(Cạnh huyền - góc nhọn trong tam giác vuông) \(\left(đpcm\right)\)

b)Vì \(\Delta ABD=\Delta EBD\)

\(\Rightarrow AD=DE\)(2 cạnh tương ứng)

Vì \(\widehat{BAC}\)và \(\widehat{CAH}\)là 2 góc kề bù 

\(\Rightarrow\widehat{BAC}+\widehat{CAH}=180^o\)

\(\Rightarrow90^o+\widehat{CAH}=180^o\)

\(\Rightarrow\widehat{CAH}=90^o\)

Tương tự ta có \(\widehat{HEC}=90^o\)

Xét \(\Delta ADH\)và \(\Delta EDC\)có :

\(\widehat{CAH}=\widehat{HEC}\left(=90^o\right)\)

\(AD=DE\)

\(\widehat{ADH}=\widehat{EDC}\)(2 góc đối đỉnh)

\(\Rightarrow\Delta ADH=\Delta EDC\left(g.c.g\right)\left(đpcm\right)\)

( MK SẼ LÀM CÂU D TRƯỚC ĐỂ CHO TIỆN LÀM CÂU C SAU NHA ! )

d) Vì \(\Delta ABD=\Delta EBD\)

\(\Rightarrow BA=BE\)(2 cạnh tương ứng)

 Xét \(\Delta BEH\)và \(\Delta BAC\)có :

\(\widehat{ABC}\)là góc chung 

\(BA=BE\)

\(\widehat{BAC}=\widehat{BEH}\left(=90^o\right)\)

\(\Rightarrow\Delta BEH=\Delta BAC\left(g.c.g\right)\)

c) Vì \(\Delta BEH=\Delta BAC\)

\(\Rightarrow EH=AC\)(2 cạnh tương ứng)

Vì \(\Delta ADH=\Delta EDC\)

\(\Rightarrow AH=EC\)(2 cạnh tương ứng)

Xét \(\Delta AHC\)và \(\Delta ECH\)có :

\(AH=EC\)

\(AC=EH\)

\(HC\)là cạnh chung

\(\Rightarrow\Delta AHC=\Delta ECH\left(c.c.c\right)\left(đpcm\right)\)

Học tốt nha bạn !

Có gì thắc mắc cứ hỏi , mk sẽ đáp lại ...

a: Xét ΔAHD vuông tại H và ΔAID vuông tại I có

AD chung

AH=AI

=>ΔAHD=ΔAID

=>góc HAD=gócIAD

=>AD là phân giác của góc HAI

b: Xét ΔDHM vuông tại H và ΔDIC vuông tại I có

DH=DI

góc HDM=góc IDC

=>ΔDHM=ΔDIC

=>DM=DC

=>ΔDMC cân tại D

c: AH+HM=AM

AI+IC=AC

mà AH=AI và HM=IC

nên AM=AC

=>ΔAMC cân tại A

mà AN là trung tuyến

nên AN vuông góc MC

Xét ΔCAM có

AN,MI,CH là các đường cao

=>AN,MI,CH đồng quy