Cho tam giác ABC có AB= AC. Gọi H là trung điểm BC a) chứng minh tam giác ABH = tam giác ACH b) chứng minh AH vuông góc BC c) AH là tia phân giác góc BAC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔABH và ΔACH có
AB=AC
AH chung
BH=CH
Do đó: ΔABH=ΔACH
b: Ta có: ΔABC cân tại A
mà AH là đường trung tuyến
nên AH là đường cao
a: Xet ΔABH và ΔACH có
AB=AC
BH=CH
AH chung
=>ΔABH=ΔACH
=>góc BAH=góc CAH
=>AH là phân giác của góc BAC
b: góc DAH=góc CAH=góc DHA
=>ΔDAH cân tại D
a: Xét ΔABH và ΔACH có
AB=AC
\(\widehat{BAH}=\widehat{CAH}\)
AH chung
Do đó: ΔABH=ΔACH
b: Ta có: ΔACB cân tại A
mà AH là đường phân giác
nên AH là đường cao
c: Xét ΔADH vuông tại D và ΔAEH vuông tại E có
AH chung
\(\widehat{DAH}=\widehat{EAH}\)
Do đó: ΔADH=ΔAEH
Suy ra: AD=AE
Xét ΔABC có
AD/AB=AE/AC
Do đó: DE//BC
b) Xét ΔADH và ΔCDE có
Góc ADH = Góc EDC ( đối đỉnh )
D là tđ của HE => HD=ED
D là tđ của AC => AD=DC
=>ΔADH = ΔCDE (cgc)
=> góc DAH = góc ECD ( 2 góc tương ứng )
mà 2 góc trên ở vị trí so le trong
=>HA// EC
Xét ΔAHC có
F là tđ của AH => CF là trung tuyến
D là tđ của AC => HD là trung tuyến
mà CF giao vs HD tại Q => Q là trọng tâm
=> HQ=\(\dfrac{2}{3}\)HD
mà HD=DE (cmt)
=>HQ=\(\dfrac{HD+DE}{3}\)=\(\dfrac{1}{3}HE\)
thế là xong câu b rùi nhé còn còn a thì dễ r bạn tự làm đc
a: Xét ΔABH vuông tại H và ΔACH vuông tại H có
AB=AC
AH chung
Do đó: ΔABH=ΔACH
b: \(\widehat{ABC}=\dfrac{180^0-30^0}{2}=75^0\)
c: Xét tứ giác AHCE có
D là trung điểm của AC
D là trung điểm của HE
Do đó: AHCE là hình bình hành
Suy ra: AH//CE
a: Xét ΔABH và ΔACH có
AB=AC
AH chung
HB=HC
Do đó: ΔAHB=ΔAHC
a: Xét ΔABH và ΔACH có
AB=AC
AH chung
HB=HC
➩ ΔAHB=ΔAHC (c-c-c)