giải theo cách lớp 7 nha ạ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{13}{2}\) : 4\(\dfrac{2}{3}\): 2
= \(\dfrac{13}{2}\): \(\dfrac{14}{3}\):2
= \(\dfrac{13}{2}\) \(\times\) \(\dfrac{3}{14}\):2
= \(\dfrac{39}{28}\) : 2
= \(\dfrac{39}{28}\) \(\times\) \(\dfrac{1}{2}\)
= \(\dfrac{39}{56}\)
d.
Ta có: \(AB=AC\) (t/c hai tiếp tuyến cắt nhau)
\(OB=OC=R\)
\(\Rightarrow OA\) là trung trực BC hay OA vuông góc BC tại I
Xét hai tam giác vuông AIB và ABO có:
\(\left\{{}\begin{matrix}\widehat{AIB}=\widehat{ABO}=90^0\\\widehat{BAI}\text{ chung}\end{matrix}\right.\) \(\Rightarrow\Delta AIB\sim\Delta ABO\left(g.g\right)\)
\(\Rightarrow\dfrac{AI}{AB}=\dfrac{AB}{AO}\Rightarrow AI.AO=AB^2\)
Theo c/m câu c có \(AB^2=AE.AF\)
\(\Rightarrow AI.AO=AE.AF\)
e.
Từ đẳng thức trên ta suy ra: \(\dfrac{AI}{AF}=\dfrac{AE}{AO}\)
Xét hai tam giác AIE và AFO có:
\(\left\{{}\begin{matrix}\dfrac{AI}{AF}=\dfrac{AE}{AO}\left(cmt\right)\\\widehat{OAF}\text{ chung}\end{matrix}\right.\) \(\Rightarrow\Delta AIE\sim\Delta AFO\left(c.g.c\right)\)
\(\Rightarrow\widehat{AFO}=\widehat{AIE}\)
Mà \(\widehat{AIE}+\widehat{OIE}=180^0\) (kề bù)
\(\Rightarrow\widehat{AFO}+\widehat{OIE}=180^0\)
\(\Rightarrow\) Tứ giác FOIE nội tiếp
a.
Do AB là tiếp tuyến của (O) \(\Rightarrow AB\perp OB\Rightarrow\widehat{ABO}=90^0\)
\(\Rightarrow\) 3 điểm A, B, O thuộc đường tròn đường kính OA (1)
Tương tự AC là tiếp tuyến của (O) nên 3 điểm A, C, O thuộc đường tròn đường kính OA
\(\Rightarrow\) 4 điểm A, B, C, O thuộc đường tròn đường kính OA hay tứ giác ABOC nội tiếp
b.
Do M là trung điểm EF \(\Rightarrow OM\perp EF\Rightarrow\widehat{OMA}=90^0\)
\(\Rightarrow\) 3 điểm A, M, O thuộc đường tròn đường kính OA (2)
(1);(2) \(\Rightarrow\) 4 điểm A, B, M, O thuộc đường tròn đường kính OA
Hay tứ giác ABMO nội tiếp
c.
Xét hai tam giác ABE và AFB có:
\(\left\{{}\begin{matrix}\widehat{EAB}\text{ chung}\\\widehat{ABE}=\widehat{AFB}\left(\text{cùng chắn BE}\right)\end{matrix}\right.\) \(\Rightarrow\Delta ABE\sim\Delta AFB\left(g.g\right)\)
\(\Rightarrow\dfrac{AB}{AF}=\dfrac{AE}{AB}\) \(\Rightarrow AB^2=AE.AF\)
Trước hết x = 1,9999... là vô hạn số 9. Toán học định nghĩa x chính là giới hạn của dãy số x_n với x_n = 1,99... 9 (có n số 9).
Khi đó x_n = 2 - (0,1)^n. Đặt x = 1,9999... , ta có 10 × x = 19, 9999...
Theo ngôn ngữ giới hạn: 10x = lim (10 x_{n+1}) = lim (20- (0,1)^n)
10x - x = lim (10 x_{n+1} - x_n) = lim [20 - (0,1)^n - 2 + (0,1)^n] = 18. Suy ra: 9 × x = 18. Vậy x = 2, hay 1,9999... = 2.
sao kì v bn này mới đăng 7 phút trc mà bn kia tl lúc 26 phút trc có sự kì nhẹ
a. Vì |2,5 – x| = 1,3 nên 2,5 – x =1,3
=> x = 2,5 – 1,3 => x = 1,2
Hoặc 2,5 – x = -1,3 => x = 2,5 – ( -1,3)
=> x = 2,5 + 1,3 => x = 3,8
Vậy x = 1,2 hoặc x = 3,8
b. 1,6 - | x – 0,2| = 0 => |x – 0,2 | =1,6 nên x – 0,2 – 1,6
=> x = 1,6 + 0,2 => x = 1,8
Hoặc x – 0,2 = -1,6 => x= -1,6 + 0,2 => x = -1,4
Vậy x = 1,8 hoặc x = -1,4
c. |x – 1,5 | + | 2,5 – x | = 0 nên |x – 1,5| ≥ 0 ; |2,5 – x| ≥ 0
Suy ra: x – 1,5 = 0; 2,5 – x = 0 => x= 1,5 và x = 2,5
Điều này không đồng thời xảy ra. Vậy không có giá trị nào của x thoả mãn bài toán.
5.
\(\Delta=m^2-4\left(m-1\right)=\left(m-2\right)^2\)
Pt có 2 nghiệm pb khi \(\left(m-2\right)^2>0\Rightarrow m\ne2\)
Khi đó theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=m\\x_1x_2=m-1\end{matrix}\right.\)
\(x_1^2+x_2^2=x_1+x_2\)
\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=x_1+x_2\)
\(\Leftrightarrow m^2-2\left(m-1\right)=m\)
\(\Leftrightarrow m^2-3m+2=0\Rightarrow\left[{}\begin{matrix}m=1\\m=2\left(loại\right)\end{matrix}\right.\)
1.
\(\Delta=9+4m>0\Rightarrow m>-\dfrac{9}{4}\)
Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=-3\\x_1x_2=-m\end{matrix}\right.\)
\(5x_1+5x_2=1-\left(x_1x_2\right)^2\)
\(\Leftrightarrow5\left(x_1+x_2\right)=1-\left(x_1x_2\right)^2\)
\(\Leftrightarrow5.\left(-3\right)=1-\left(-m\right)^2\)
\(\Leftrightarrow m^2=16\Rightarrow\left[{}\begin{matrix}m=4\\m=-4< -\dfrac{9}{4}\left(loại\right)\end{matrix}\right.\)
2.
\(\Delta=\left(2m+1\right)^2-4\left(m^2+1\right)=4m-3>0\Rightarrow m>\dfrac{3}{4}\)
Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=2m+1\\x_1x_2=m^2+1\end{matrix}\right.\)
\(\left(x_1+1\right)^2+\left(x_2+1\right)^2=13\)
\(\Leftrightarrow x_1^2+2x_1+1+x_2^2+2x_2+1=13\)
\(\Leftrightarrow x_1^2+x_2^2+2\left(x_1+x_2\right)=11\)
\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2+2\left(x_1+x_2\right)=11\)
\(\Leftrightarrow\left(2m+1\right)^2-2\left(m^2+1\right)+2\left(2m+1\right)=11\)
\(\Leftrightarrow2m^2+8m-10=0\)
\(\Rightarrow\left[{}\begin{matrix}m=1\\m=-5< \dfrac{3}{4}\left(loại\right)\end{matrix}\right.\)
\(n_{Fe}=\dfrac{11.2}{56}=0.2\left(mol\right)\)
\(Fe+2HCl\rightarrow FeCl_2+H_2\left(1\right)\)
\(0.2................................0.2\)
\(2Al+3H_2SO_4\rightarrow Al_2\left(SO_4\right)_3+3H_2\left(2\right)\)
\(a.................................1.5a\)
Vì : cân thăng bằng nên :
\(m_{Fe}-m_{H_2\left(1\right)}=m_{Al}-m_{H_2\left(2\right)}\)
\(\Leftrightarrow11.2-0.2\cdot2=27a-1.5\cdot2a\)
\(\Leftrightarrow a=0.45\)
\(m_{Al}=0.45\cdot27=12.15\left(g\right)\)