Một bài bất đẳng thức khá "lạ". Ai có khả năng về bất giải dùm mình nhé!!
Cho các số dương x, y thỏa mãn: \(\sqrt{\frac{2x}{y}}.\left(2xy-1\right)=2xy+1\)
Tìm giá trị nhỏ nhất của biểu thức: \(2x+\frac{1}{y}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
TK: Tìm Min (x^4 + 1) (y^4 + 1) với x + y = căn10 ; x , y > 0 - Thanh Truc
1. Ta có: \(x^2-2xy-x+y+3=0\)
<=> \(x^2-2xy-2.x.\frac{1}{2}+2.y.\frac{1}{2}+\frac{1}{4}+y^2-y^2-\frac{1}{4}+3=0\)
<=> \(\left(x-y-\frac{1}{2}\right)^2-y^2=-\frac{11}{4}\)
<=> \(\left(x-2y-\frac{1}{2}\right)\left(x-\frac{1}{2}\right)=-\frac{11}{4}\)
<=> \(\left(2x-4y-1\right)\left(2x-1\right)=-11\)
Th1: \(\hept{\begin{cases}2x-4y-1=11\\2x-1=-1\end{cases}}\Leftrightarrow\hept{\begin{cases}x=0\\y=-3\end{cases}}\)
Th2: \(\hept{\begin{cases}2x-4y-1=-11\\2x-1=1\end{cases}}\Leftrightarrow\hept{\begin{cases}x=1\\y=3\end{cases}}\)
Th3: \(\hept{\begin{cases}2x-4y-1=1\\2x-1=-11\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-5\\y=-3\end{cases}}\)
Th4: \(\hept{\begin{cases}2x-4y-1=-1\\2x-1=11\end{cases}}\Leftrightarrow\hept{\begin{cases}x=6\\y=3\end{cases}}\)
Kết luận:...
Áp dụng BĐT \(a^2+b^2\ge\frac{\left(a+b\right)^2}{2}\) và BĐT \(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\) ta có:
\(P=\left(2x+\frac{1}{x}\right)^2+\left(2y+\frac{1}{y}\right)^2\ge\frac{\left(2x+\frac{1}{x}+2y+\frac{1}{y}\right)^2}{2}=\frac{\left(2+\frac{1}{x}+\frac{1}{y}\right)^2}{2}\)
\(\ge\frac{\left(2+\frac{4}{x+y}\right)^2}{2}=\frac{\left(2+\frac{4}{1}\right)^2}{2}=\frac{6^2}{2}=18\)
Nên GTNN của P là 18 đạt được khi \(x=y=\frac{1}{2}\)
Mình nghĩ phần phân thức là $3x+3y+2z$ thay vì $3x+3y+3z$. Nếu là vậy thì bạn tham khảo lời giải tại link sau:
Cho x, y, z là các số thực dương thỏa mãn đẳng thức xy yz zx=5. Tìm GTNN của biểu thức \(P=\frac{3x 3y 2z}{\sqrt{6\left(... - Hoc24
mình cảm ơn bạn nhiều ạ <3 bạn có thể giúp mình mấy câu mình vừa đăng không
\(P=\left(x^4+1\right)\left(y^4+1\right)=x^4y^4+x^4+y^4+1\)
Ta có \(x^2+y^2=\left(x+y\right)^2-2xy=10-2xy\)
\(\Rightarrow x^4+y^4=\left(x^2+y^2\right)^2-2x^2y^2=\left(10-2xy\right)^2-2x^2y^2=100-40xy+2x^2y^2\)
\(\Rightarrow P=\left(xy\right)^4+101-40xy+2x^2y^2\)
\(=\left[\left(xy\right)^4-8\left(xy\right)^2+16\right]+10\left[\left(xy\right)^2-4xy+4\right]+45\)
\(=\left(x^2y^2-4\right)^2+10\left(xy-2\right)^2+45\)
\(\Rightarrow P\ge45\)
Dấu "=" xảy ra khi xy=2
Lại có \(x+y=\sqrt{10}\)
\(\Rightarrow x=\sqrt{10}-y\Rightarrow xy=\sqrt{10}y-y^2=2\)
\(\Rightarrow y^2-\sqrt{10y}+2=0\)
Ta có \(\Delta=10-8=2\)
\(\Rightarrow y=\frac{\sqrt{10}+\sqrt{2}}{2}\)
\(\Rightarrow x=\frac{4}{\sqrt{10}+\sqrt{2}}=\frac{\sqrt{10}-\sqrt{2}}{2}\)
Vậy giá trị nhỏ nhất của P là 45 khi \(\hept{\begin{cases}x=\frac{\sqrt{10}-\sqrt{2}}{2}\\y=\frac{\sqrt{10}+\sqrt{2}}{2}\end{cases}}\)
Áp dụng bất đẳng thức : \(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\) . Dấu "=" xảy ra khi a = b
Được : \(P=\frac{1}{x^2+y^2}+\frac{1}{2xy}\ge\frac{4}{x^2+y^2+2xy}=\frac{4}{\left(x+y\right)^2}=4\)
Dấu "=" xảy ra khi \(\hept{\begin{cases}x,y>0\\x^2+y^2=2xy\\x+y=1\end{cases}}\) \(\Leftrightarrow x=y=\frac{1}{2}\)
Vậy Min \(P=4\Leftrightarrow x=y=\frac{1}{2}\)
Mình sẽ hướng dẫn các bạn các cách khác nhau cho bài này!!!
gt \(\Leftrightarrow\sqrt{\frac{2x}{y}}\left(2xy-1\right)=2xy+1\Leftrightarrow\sqrt{\frac{2x}{y}}\left(2x-\frac{1}{y}\right)=2x+\frac{1}{y}\)\(\Leftrightarrow\)\(\frac{2x}{y}\left(2x-\frac{1}{y}\right)^2=\left(2x+\frac{1}{y}\right)^2\) (1)
Cách 1: Đặt \(2x+\frac{1}{y}=a\) và \(2x-\frac{1}{y}=b\) nên (1)\(\Leftrightarrow\) \(\frac{2x}{y}b^2=a^2\)mà \(a^2-b^2=\frac{8x}{y}\Leftrightarrow\)\(\frac{a^2-b^2}{4}=\frac{2x}{y}\)
\(\Leftrightarrow\)\(\frac{a^2-b^2}{4}b^2=a^2\Leftrightarrow4a^2=\left(a^2-b^2\right)b^2\Leftrightarrow b^4-a^2b^2+4a^2=0\)
Coi là phương trình bậc hai ẩn b2 ta có: \(\Delta=a^4-16a^2=a^2\left(a-4\right)\left(a+4\right)\)để a,b tồn tại thì
\(\Delta\ge0\Leftrightarrow a\ge4\) vì a dương