K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 2 2016

a, + Nếu p = 3k mà p là số nguyên tố

=> p = 3

=> p + 2 = 5

và p + 10 = 13 (đều là số nguyên tố, chọn)

+ Nếu p = 3k + 1

=> p + 2 = 3k + 3 chia hết cho 3, là hợp số (loại)

+ Nếu p = 3k + 2

=> p + 10 = 3k + 12 chia hết cho 3, là hợp số (loại)

Vậy p = 3

b, Xét 3 trường hợp p = 3k; p = 3k + 1; p = 3k + 2

c, Xét 5 trường hợp 5k; 5k + 1; 5k + 2; 5k + 3; 5k + 4

21 tháng 2 2016

dễ mà bạn 

thử chọn đi . ko nhìu đâu

a: p=3

b: p=3

Câu b:

undefined

Đến đoạn này cũng xét như câu a

Câu c:

undefined

 

 

3 tháng 4 2018

Vì pq +11 là số nguyên tố \(\Rightarrow\)pq +11 là số lẻ \(\Rightarrow\)pq là số chẵn \(\Rightarrow\)\(⋮\)2 hoặc q\(⋮\)2

  1. p\(⋮\)2 mà q là số nguyên tố \(\Rightarrow\)q = 2 

thay p = 2 vào 7p +q ta đc 14+ q mà 7p +q là số nguyên tố \(\Rightarrow\)14+q là số nguyên tố

 \(\Rightarrow\)14+q ko chia hết cho 3 mà 14 chia 3 dư 2 \(\Rightarrow\)\(⋮\)3 hoặc q chia 3 dư 2

  • q chia 3 dư 2 \(\Rightarrow\)q có dạng 3k+2 (k là số tự nhiên)

thay q=3k+2;p=2 vào pq +11 ta đc

2(3k+2)+11=6k+4+11=6k+15=3(2k+5)\(⋮\)3 và 3(2k+5) > 3 (KTM vì pq +11 là số nguyên tố)

  • \(⋮\)3\(\Rightarrow\)q có dạng 3a(a là số tự nhiên) 

mà q là số nguyên tố \(\Rightarrow\)q =1

2. chứng minh tương tự

đúng thì k nha

19 tháng 3 2018

Gúp mình nhanh lẹ nhá AI NHANH K CHO

AH
Akai Haruma
Giáo viên
2 tháng 12 2023

** Sửa đề: sao cho $p+2, p+10$ cũng là snt.

Lời giải:

Nếu $p$ chia hết cho $3$ thì do $p$ là snt nên $p=3$. Khi đó: $p+2=5; p+10=13$ cũng là snt (thỏa mãn) 

Nếu $p$ chia $3$ dư $1$. Đặt $p=3k+1$ với $k$ tự nhiên.

Khi đó: $p+2=3k+3=3(k+1)\vdots 3$. Mà $p+2>3$ với mọi $p$ nguyên tố.

$\Rightarrow p+2$ không là snt theo yêu cầu đề (loại) 

Nếu $p$ chia $3$ dư $2$. Đătk $p=3k+2$ với $k$ tự nhiên.

Khi đó: $p+10=3k+2+10=3k+12=3(k+4)\vdots 3$. Mà $p+10>3$ nên $p+10$ không là snt theo yêu cầu đề (loại) 
Vậy $p=3$ là đáp án duy nhất.

13 tháng 12 2016

ai giai ho mik roi mik k cho nha, cam on

13 tháng 12 2016

Xét trường hợp p= 2=> p+10= 12﴾không phải là số nguyên tố﴿

Xét trường hợp p= 3=> p+ 10= 13; p+ 14= 17 ﴾đều là số nguyên tố﴿

Xét p>3=> p có một trong 2 dang 3k+1; 3k‐ 1

+﴿Với p= 3k+1=> p+14= 3k+1+14=3k+15 chia hết cho 3

+﴿Với p= 3k‐1=> p‐ 10= 3k‐ 1+ 10= 3k+9 chia hết cho 3

Vậy p= 3 thì p+10 và p+14 cũng là số nguyên tố 

26 tháng 7 2023

Bài 1 :

a) \(123456789+729=\text{123457518}⋮2\)

⇒ Số trên là hợp số

b)\(5.7.8.9.11-132=\text{27588}⋮2\)

⇒ Số trên là hợp số

Bài 2 :

a) \(P+2\&P+4\) ;à số nguyên tố

\(\Rightarrow\dfrac{P+2}{P+4}=\pm1\)

\(\Rightarrow\left[{}\begin{matrix}\dfrac{P+2}{P+4}=1\\\dfrac{P+2}{P+4}=-1\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}P+2=P+4\\P+2=-P-4\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}0.P=2\left(x\in\varnothing\right)\\2.P=-6\end{matrix}\right.\)

\(\Rightarrow P=-3\)

Câu b tương tự

 

26 tháng 7 2023

a,123456789+729=123457518(hợp số)

b,5x7x8x9x11-132=27588(hợp số)

Bài 2,

a,Nếu P=2=>p+2=4 và p+4=6 (loại)

Nếu P=3=>p+2=5 và p+4=7(t/m)

P>3 => P có dạng 3k+1 hoặc 3k+2(k ϵn,k>0)

Nếu p=3k+1=>p+2=3k+3 ⋮3( loại)

Nếu p=3k+2=>p+4=3k+6⋮3(loại)

Vậy p=3 thỏa mãn đề bài

b,Nếu p=2=>p+10=12 và p+14=16(loại)

Nếu p=3=>p+10=13 và p+14=17(t/m)

Nếu p >3=>p có dạng 3k+1 hoặc 3k+2

Nếu p=3k+1=>p+14=3k+15⋮3(loại)

Nếu p=3k+2=>p+10=3k+12⋮3(loại)

Vậy p=3 thỏa mãn đề bài.