tìm GTNN và GTLN của
(2n-1)/(n-3)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
GTLN khi mẫu của A nhỏ nhất nguyên dương <=> n-3 =1 <=> n=4 => GTLN của A=7
Lời giải:
$\frac{5n+2}{2n+1}=\frac{2,5(2n+1)-0,5}{2n+1}=2,5-\frac{0,5}{2n+1}$
Để $\frac{5n+2}{2n+1}$ lớn nhất thì $\frac{0,5}{2n+1}$ nhỏ nhất
$\Leftrightarrow 2n+1$ lớn nhất
$\Leftrightarrow n$ lớn nhất. Trong tập số tự nhiên thì không tồn tại số tự nhiên lớn nhất nên không có GTLN
Để $\frac{5n+2}{2n+1}$ nhỏ nhất thì $\frac{0,5}{2n+1}$ lớn nhất
$\Leftrightarrow 2n+1$ nhỏ nhất $\Leftrightarrow n$ nhỏ nhất
Với $n\in\mathbb{N}^*$ thì $n$ nhỏ nhất bằng $1$
$\Rightarrow \frac{5n+2}{2n+1}$ min $=\frac{5.1+2}{2.1+1}=\frac{7}{3}$
a, Để A thuộc z thì 4n + 1 chia hết cho 2n + 3
Mà 2n + 3 chia hết cho 2n + 3 => 2(2n + 3) chia hết cho 2n + 3
=> 4n + 1 - 2(2n + 3) chia hết cho 2n + 3
=> 4n + 1 - 4n - 6 chia hết cho 2n + 3
=> -5 chia hết cho 2n + 3
=> 2n + 3 thuộc {-1; 1; -5; 5}
=> 2n thuộc {-4; -2; -8; 2}
=> n thuộc {-2; -1; -4; 1}
b, Ta có:
\(A=\frac{4n+1}{2n+3}=\frac{4n+6-5}{2n+3}=\frac{2\left(2n+3\right)-5}{2n+3}=2-\frac{5}{2n+3}\)
+ Để A nhỏ nhất thì \(\frac{5}{2n+3}\)lớn nhất => 2n + 3 nhỏ nhất dương (Vì 2n + 3 âm thì 5/2n+3 âm, 2n + 3 khác 0)
=> 2n + 3 = 1
=> 2n = -2
=> n = -1
+ Lớn nhất xét tương tự
Bài 3:
a: \(\Leftrightarrow8n^2+4n-8n-4+5⋮2n+1\)
\(\Leftrightarrow2n+1\in\left\{1;-1;5;-5\right\}\)
hay \(n\in\left\{0;-1;2;-3\right\}\)
b: \(\Leftrightarrow4n^3-2n^2-6n+3+2⋮2n-1\)
\(\Leftrightarrow2n-1\in\left\{1;-1\right\}\)
hay \(n\in\left\{1;0\right\}\)