Tìm a,b biết a.b bằng 320 và BCNN của a,b bằng 160?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1.
\(ƯCLN\left(a,b\right)=7\)
\(\Rightarrow a,b\)chia hết cho 7
\(\Rightarrow a,b\in B\left(7\right)\)
\(B\left(7\right)=\left(0;7;14;21;28;35;42;49;56;63;70;77;84;91;98;105...\right)\)
a, vì a+b=56 \(\Rightarrow\)\(a\le56;b\le56\)
\(\Rightarrow a=56;b=0.a=0;b=56\)
\(a=7;b=49.a=49;b=7\)
\(a=14;b=42.a=42;b=14\)
\(a=21;b=35.a=35;b=21\)
\(a=b=28\)
b, a.b=490 \(\Rightarrow a< 490;b< 490\)
\(\Rightarrow\) \(a=7;b=70-a=70;b=7\)
\(a=14;b=35-a=35;b=14\)
c, BCNN (a,b) = 735
\(\Rightarrow a,b\inƯ\left(735\right)\)
\(Ư\left(735\right)=\left(1;3;5;7;15;21;35;49;105;147;245;735\right)\)
\(\Rightarrow\)\(a=7;b=105-a=105;b=7\)
2.
a+b=27\(\Rightarrow\)\(a\le27;b\le27\)
ƯCLN(a,b)=3
\(\Rightarrow a,b\in B\left(_{ }3\right)\in\left(0;3;6;9;12;15;18;21;24;27;30;...\right)\)
BCNN(a,b)=60
\(\Rightarrow a,b\inƯ\left(60\right)\in\left(1;2;3;4;5;6;10;12;15;20;60\right)\)
\(\Rightarrow\)\(a=12;b=15-a=15;b=12\)
=>a,b la ước chung cua 60 , 360 . UCLN (60 , 360)= 60 . U(60) ={1;2;3;4;5;6;10;12;15;20;30;60} . Ma trong do chi co 12.30= 360
=> a=12 , b=30 hoac a=12 , b=30
Vì a*b=BCNN(a;b)*UCLN(a;b)
Suy ra: UCLN(a;b)=320/160=2
a=2*m
b=2*n
UCLN(m;n)=1
Ta có a*b=(2*m)*(12*n)=320
m*n*4=320
m*n=80
Nếu m=80 => a=160
n=1 => b=2
Nếu m=40 =>a=80
n=2 => b=4
Nếu m=20 => a=40
n=4 => b=8
Nếu m=16 => a=32
n=5 => b=10
Lời giải:
Gọi ƯCLN của $a,b$ là $d$. Khi đó, đặt $a=dx, b=dy$ thì $(x,y)=1$
Ta có:
$ab=dxdy=d^2xy=320(1)$
$BCNN(a,b)=dxy=160$
$\Rightarrow d=\frac{d^2xy}{dxy}=\frac{320}{160}=2$
Thay vào (1) suy ra $xy=80$Vì $x,y$ nguyên tố cùng nhau nên $(x,y)=(1,80),(16,5), (80,1), (5,16)$
$\Rightarrow (a,b)=(2,160), (32,10),(160,2), (10,32)$