K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NM
8 tháng 12 2021

ta có : 

\(P=\frac{n^3-n^2+2n+7}{n^2+1}=n-1+\frac{n+8}{n^2+1}\) nguyên khi \(\frac{n+8}{n^2+1}\) nguyên.

đặt \(\frac{n+8}{n^2+1}=k\in Z\Rightarrow n^2.k-n+k-8=0\) 

ta có \(\Delta=1-4k\left(k-8\right)=-4k^2+32k-1\ge0\Leftrightarrow k\in\left\{1,..,7\right\}\)

mà n nguyên nên ta có : \(k-8\text{ chia hết cho k\Rightarrow}k\in\left\{1,2,4,8\right\}\)

với k =1 ta tìm được n không nguyên.

với k =2 ta tìm được n =2 thỏa mãn

với k =4 ta tìm  được n không nguyên.

vậy n=2 là nghiệm duy nhất 

6 tháng 12 2021

TL :

undefined

HT

@@@@@@@@@@@@@@@@@@@@

18 tháng 5 2016

D=(n+1)/(n-2)=n-2-1/n-2

=n-2/n-2 + 1/n-2

=1+1/n-2

để D lớn nhất thì D' =1/n-2

khi n-2<0 suy ra d'<0

khi n-2>0 suy ra d'>o

để d' =1/n-2 đạt max thì n-2 phải là giá trị nguyên dương nhỏ nhất.

n-2=1=>n=3

và khi n=3 thì max D=3+1/3-2=4 

20 tháng 8 2017

D=(n+1)/(n-2)=n-2-1/n-2 =n-2/n-2 + 1/n-2 =1+1/n-2

Để D lớn nhất thì D' =1/n-2

Khi n-2<0 suy ra d'<0

Khi n-2>0 suy ra d'>o

Để d' =1/n-2 đạt max thì n-2 phải là giá trị nguyên dương nhỏ nhất.

n-2=1=>n=3 và khi n=3 thì max D=3+1/3-2=4

20 tháng 8 2017

\(D=\frac{3}{n-2}+1\)

Để D lớn nhất thì \(\frac{3}{n-2}\)lớn nhất tức n-2 nhỏ nhất và n-2 dương

Do n nguyên nên GTNN của n-2 là 1, n=3

Vậy GTLN của D=\(\frac{3+1}{3-2}=4\)

4 tháng 7 2015

D=\(\frac{n-2+3}{n-2}=1+\frac{3}{n-2}\)=> D nguyên <=> 3/n-2 nguyên ( 1nguyên r) => n-2 thuộc Ư(3) ,=> thuộc: (+-1;+-3) <=> n thuộc (3;1;5;-1)

\(F=\frac{n^2-2n+3n-6+1}{n-2}=\frac{\left(n-2\right)\left(n+3\right)+1}{n-2}=n+3+\frac{1}{n-2}\)

=> F nguyên <=> n+3 nguyên và 1/ n-2 nguyên <=> n nguyên và n-2 thuộc Ư(1) <=> thuộc (+-1) <=> n thuộc (3;1)

2 tháng 6 2019

\(D=\frac{2n-3}{n-2}\)đạt giá trị lớn nhất <=> 2n - 3 lớn nhất và n - 2 nhỏ nhất (đk n \(\ne\)2)

Khi D lớn nhất D phải là số tự nhiên, do đó n - 2 phải  là số tự nhiên nhỏ nhất

=> n - 2 = 1

=> n = 2+ 1 

=> n = 3

Thay n vào biểu thức ở tử số ta có : 2.3 - 3 = 6 - 3 = 3

Vậy n = 3 và giá trị lớn nhất của D = \(\frac{2.3-3}{3-2}=\frac{3}{1}=3\)

2 tháng 6 2019

trl

n=3

hok tốt

16 tháng 4 2016

Để biểu thức A đạt giá trị nguyên

<=> 3 chia hết cho (n-2)

Vì 3 chia hết cho n-2 => (n-2) thuộcƯ(3)={-3;-1;1;3}

Ta có bảng sau:

  

n-2-3-113
n-1135

Vậy để biểu thức A đạt giá trị nguyên <=> n thuộc {-1;1;3;5}

20 tháng 2 2020

Bài 2:

a) Để B là phân số thì n -3 \(\ne\)0 => n\(\ne\)3

b) Để B có giá trị là số nguyên thì n+4 \(⋮\)n-3

\(\frac{n+4}{n-3}\)\(\frac{n-3+7}{n-3}\)\(\frac{7}{n-3}\)Vì n+4 \(⋮\)n-3 nên 7 \(⋮\)n-3

=> n-3 \(\in\)Ư(7) ={ 1;7; -1; -7}

=> n\(\in\){ 4; 10; 2; -4}

Vậy...

c) Bn thay vào r tính ra

20 tháng 2 2020

la 120

NM
14 tháng 1 2022

a. điều kiện của n để B là phân số là : 

\(n-2\ne0\Leftrightarrow n\ne2\)

b. ta có \(B=\frac{n-7}{n-2}=1-\frac{5}{n-2}\) nguyên khi n-2 là ước của 5

hay \(n-2\in\left\{-5;-1;1;5\right\}\Leftrightarrow n\in\left\{-3;1;3;7\right\}\)

26 tháng 11 2023

a: \(A=28n^2+27n+5\)

\(=28n^2+20n+7n+5\)

\(=4n\left(7n+5\right)+\left(7n+5\right)\)

\(=\left(4n+1\right)\left(7n+5\right)\)

Nếu n=0 thì \(A=\left(4\cdot0+1\right)\left(7\cdot0+5\right)=1\cdot5=5\) là số nguyên tố

=>Nhận

Khi n>0 thì (4n+1)(7n+5) sẽ là tích của hai số nguyên dương khác 1

=>A=(4n+1)(7n+5) không thể là số nguyên tố

=>Loại

Vậy: n=0

b: \(B=n\left(n^2+n+7\right)-2\left(n^2+n+7\right)\)

\(=\left(n^2+n+7\right)\left(n-2\right)\)

Để B là số nguyên tố thì B>0

=>\(\left(n^2+n+7\right)\left(n-2\right)>0\)

=>n-2>0

=>n>2
\(B=\left(n^2+n+7\right)\left(n-2\right)\)

TH1: n=3

\(B=\left(3^2+3+7\right)\left(3-2\right)=9+3+7=9+10=19\) là số nguyên tố

=>Nhận

TH2: n>3

=>n-2>1 và \(n^2+n+7>1\)

=>\(B=\left(n-2\right)\left(n^2+n+7\right)\) là tích của hai số nguyên dương lớn hơn 1

=>B chắc chắn không thể là số nguyên tố

=>Loại

c: \(C=n\left(n^2+n+7\right)+\left(n^2+n+7\right)\)

\(=\left(n^2+n+7\right)\left(n+1\right)\)

TH1: n=0

=>\(C=\left(0+0+7\right)\left(0+1\right)=7\cdot1=7\) là số nguyên tố

=>Nhận

TH2: n>0

=>n+1>0 và \(n^2+n+7>1\)

=>\(C=\left(n+1\right)\left(n^2+n+7\right)\) là tích của hai số nguyên dương lớn hơn 1

=>C chắc chắn không thể là số nguyên tố

=>Loại

d: \(D=n^2-1=\left(n-1\right)\left(n+1\right)\)

Để D là số nguyên tố thì D>0

=>(n-1)(n+1)>0

TH1: \(\left\{{}\begin{matrix}n-1>0\\n+1>0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}n>1\\n>-1\end{matrix}\right.\)

=>n>1

TH2: \(\left\{{}\begin{matrix}n-1< 0\\n+1< 0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}n< 1\\n< -1\end{matrix}\right.\)

=>n<-1

Khi n=2 thì \(D=2^2-1=4-1=3\) là số nguyên tố(nhận)

Khi n>2 thì n-1>1 và n+1>3>1

=>D=(n-1)(n+1) là tích của hai số tự nhiên lớn hơn 1

=>D không là số nguyên tố

=>Loại

Khi n=-2 thì \(D=\left(-2\right)^2-1=4-1=3\) là số nguyên tố

=>Nhận

Khi n<-2 thì n-1<-3 và n+1<-1

=>D=(n-1)(n+1)>0 và D bằng tích của hai số nguyên dương lớn hơn 1

=>D không là số nguyên tố

=>Loại

a: =>\(n+2\in\left\{1;-1;7;-7\right\}\)

=>\(n\in\left\{-1;-3;5;-9\right\}\)

b: =>n-3+4 chia hết cho n-3

=>\(n-3\in\left\{1;-1;2;-2;4;-4\right\}\)

=>\(n\in\left\{4;2;5;1;7;-1\right\}\)

c: =>3n^3+n^2+9n^2-1-4 chia hết cho 3n+1

=>\(3n+1\in\left\{1;-1;2;-2;4;-4\right\}\)

=>\(n\in\left\{0;-\dfrac{2}{3};\dfrac{1}{3};-1;1;-\dfrac{5}{3}\right\}\)

d: =>10n^2-10n+11n-11+1 chia hết cho n-1

=>\(n-1\in\left\{1;-1\right\}\)

=>\(n\in\left\{2;0\right\}\)