K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 10 2023

a: Khi x=2 và y=-3 thì \(x^2+2y=2^2+2\cdot\left(-3\right)=4-6=-2\)

b: \(A=x^2+2xy+y^2=\left(x+y\right)^2\)

Khi x=4 và y=6 thì \(A=\left(4+6\right)^2=10^2=100\)

c: \(P=x^2-4xy+4y^2=\left(x-2y\right)^2\)

Khi x=1 và y=1/2 thì \(P=\left(1-2\cdot\dfrac{1}{2}\right)^2=\left(1-1\right)^2=0\)

30 tháng 12 2020

 bbgfhfygfdsdty64562gdfhgvfhgfhhhhh

\hvhhhggybhbghhguyg

25 tháng 12 2016

\(\orbr{\begin{cases}y=\frac{3}{x}\\z=\frac{4}{x}\end{cases}\Rightarrow\frac{12}{x^2}=6\Rightarrow x^2=2}\)

\(\orbr{\begin{cases}x=\frac{3}{y}\\z=\frac{6}{y}\end{cases}\Rightarrow\frac{18}{y^2}=4\Rightarrow y^2=\frac{9}{2}}\)

\(\orbr{\begin{cases}x=\frac{4}{z}\\y=\frac{6}{z}\end{cases}\Rightarrow\frac{24}{z^2}=3\Rightarrow z^2=8}\)

\(A=\frac{1}{2}\left(2+\frac{9}{2}+8\right)=\frac{4+9+16}{4}=\frac{29}{4}\) 

20 tháng 10 2019

Câu hỏi của Lãnh Hàn Thần - Toán lớp 8 - Học toán với OnlineMath

Bài 1: a) Cho a + b + c = 9, a2 + b2 + c2 = 141. Tính giá trị biểu thức M = ab + bc + cab) Cho x + y = 1. Tính giá trị của biểu thức B = x3 + 3xy + y3c) Cho x + y = a; x2 + y2 = b, x3 + y3 = c. Tính giá trị của biểu thức N = a3 - 3ab + 2cd) Cho x + y = a, x - y = b. Tính giá trị của biểu thức D = x3 - y3 theo a và be) Cho x + y = a, x2 + y2 = b. Tính giá trị của biểu thức E = x3 + y3 theo a và bf) Cho x + y = 1, xy= -1. Tính...
Đọc tiếp

Bài 1: 
a) Cho a + b + c = 9, a+ b+ c= 141. Tính giá trị biểu thức M = ab + bc + ca
b) Cho x + y = 1. Tính giá trị của biểu thức B = x3 + 3xy + y3
c) Cho x + y = a; x2 + y= b, x+ y= c. Tính giá trị của biểu thức N = a3 - 3ab + 2c
d) Cho x + y = a, x - y = b. Tính giá trị của biểu thức D = x- ytheo a và b
e) Cho x + y = a, x+ y= b. Tính giá trị của biểu thức E = x3 + ytheo a và b
f) Cho x + y = 1, xy= -1. Tính giá trị của các biểu thức x+ y2 , x+ y3 , (x2 - y2)2 , x+ y6
g) Cho x - y = 2, xy = 1. Tính giá trị của các biểu thức x+ y2, x3 - y3, (x2- y2)2, x- y6
h) Cho a + b + c = 0, a2+ b+ c= 1. Tính giá trị của biểu thức H = a+ b+ c4
i) Cho a + b = a+ b=1. Chứng minh: a+ b= a4+ b4
j) Cho x + y = a + b; x+ y= a+ b2. CMR: x2000+ y2000 = a2000+ b2000
k) Cho a+ b= 1; c+ d= 1; ac + bd = 0. CMR: ab + cd = 0 
 

3
21 tháng 10 2018

1/Ta có: \(\left(a+b+c\right)^2=a^2+b^2+c^2+2\left(ab+bc+ca\right)=81\)

\(\Rightarrow M=ab+bc+ca=\frac{\left(81-141\right)}{2}\)

26 tháng 9 2020

a,\(a+b+c=9\)

\(\Rightarrow\left(a+b+c\right)^2=81\)

\(\Rightarrow a^2+b^2+c^2+2ab+2bc+2ca=81\)

Vì \(a^2+b^2+c^2=141\)

\(\Rightarrow2ab+2bc+2ca=-60\)

\(\Rightarrow2\left(ab+bc+ca\right)=-60\)

\(\Rightarrow ab+bc+ca=-30\)

Vậy ...

8 tháng 9 2023

Bài 1 :

a) \(M=\dfrac{1}{2}x^2y.\left(-4\right)y\)

\(\Rightarrow M=-2x^2y^2\)

Khi \(x=\sqrt[]{2};y=\sqrt[]{3}\)

\(\Rightarrow M=-2.\left(\sqrt[]{2}\right)^2.\left(\sqrt[]{3}\right)^2\)

\(\Rightarrow M=-2.2.3=-12\)

b) \(N=xy.\sqrt[]{5x^2}\)

\(\Rightarrow N=xy.\left|x\right|\sqrt[]{5}\)

\(\Rightarrow\left[{}\begin{matrix}N=xy.x\sqrt[]{5}\left(x\ge0\right)\\N=xy.\left(-x\right)\sqrt[]{5}\left(x< 0\right)\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}N=x^2y\sqrt[]{5}\left(x\ge0\right)\\N=-x^2y\sqrt[]{5}\left(x< 0\right)\end{matrix}\right.\)

Khi \(x=-2< 0;y=\sqrt[]{5}\)

\(\Rightarrow N=-x^2y\sqrt[]{5}=-\left(-2\right)^2.\sqrt[]{5}.\sqrt[]{5}=-4.5=-20\)

2:

Tổng của 4 đơn thức là;

\(A=11x^2y^3+\dfrac{10}{7}x^2y^3-\dfrac{3}{7}x^2y^3-12x^2y^3=0\)

=>Khi x=-6 và y=15 thì A=0

 

22 tháng 12 2021

3r3reR