Tìm số nguyên x, y biết (2 - x)(y+3)=6
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1
a) (x + 3)(x + 2) = 0
x + 3 = 0 hoặc x + 2 = 0
*) x + 3 = 0
x = 0 - 3
x = -3 (nhận)
*) x + 2 = 0
x = 0 - 2
x = -2 (nhận)
Vậy x = -3; x = -2
b) (7 - x)³ = -8
(7 - x)³ = (-2)³
7 - x = -2
x = 7 + 2
x = 9 (nhận)
Vậy x = 9
Lời giải:
Vì $x,y$ nguyên nên $2-x, y+3$ cũng là số nguyên. Mà tích của chúng bằng $6$ nên có các trường hợp để ở bảng sau:
2-x | -1 | -6 | 1 | 6 | 2 | -2 | 3 | -3 |
y+3 | -6 | -1 | 6 | 1 | 3 | -3 | 2 | -2 |
x | 3 | 8 | 1 | -4 | 0 | 4 | -1 | 5 |
y | -9 | -4 | 3 | -2 | 0 | -6 | -1 | -5 |
\(\text{(x+2)(y-3)=5 }\)
\(\Rightarrow\)x+2;y-3\(\in\)Ư(5)
Mà Ư(5)={1;5;-1;-5}
Có bảng:
Th1:
x+2=1;y-3=6
=>x=-3
y=9
Tương tự 3 trường hợp còn lại
Các bạn giúp mình giải với nhé! Đúng thì mình k đúng nhé. Cảm ơn các bạn nhiều lắm. Yêu cả nhà.
\(1.\left(x-5\right)^{23}.\left(y+2\right)^7=0\)
\(\Rightarrow\hept{\begin{cases}\left(x-5\right)^{23}=0\\\left(y+2\right)^7=0\end{cases}\Rightarrow\hept{\begin{cases}\left(x-5\right)^{23}=0^{23}\\\left(y+2\right)^7=0^7\end{cases}}}\)\(\Rightarrow\hept{\begin{cases}x-5=0\\y+2=0\end{cases}\Rightarrow\hept{\begin{cases}x=0+5\\y=0-2\end{cases}}}\)\(\Rightarrow\hept{\begin{cases}x=5\\y=-2\end{cases}}\)
Vậy \(\left(x;y\right)=\left(5;-2\right)\)
\(\left(x-6\right)^{2020}+2\left(y-3\right)^{2020}=0\)
Ta có : \(\left(x-6\right)^{2020}\ge0\forall x\)
\(2\left(y+3\right)^{2020}\ge0\forall y\)
=>\(\left(x-6\right)^{2020}+2\left(y+3\right)^{2020}\ge0\forall x,y\)
Dấu "=" xảy ra <=>\(\left\{{}\begin{matrix}x-6=0\\y+3=0\end{matrix}\right.< =>\left\{{}\begin{matrix}x=6\\y=-3\end{matrix}\right.\)
Lời giải:
$\frac{2}{x}+\frac{y}{3}=\frac{1}{6}$
$\frac{6+xy}{3x}=\frac{1}{6}$
$\frac{2(6+xy)}{6x}=\frac{x}{6x}$
$\Rightarrow 2(6+xy)=x$
$\Rightarrow 12+2xy-x=0$
$12=x-2xy$
$12=x(1-2y)$
$\Rightarrow 1-2y$ là ước của $12$
Mà $1-2y$ lẻ nên $1-2y$ là ước lẻ của $12$
$\Rightarrow 1-2y\in\left\{\pm 1; \pm 3\right\}$
$\Rightarrow y\in\left\{0; 1; 2; -1\right\}$
$\Rightarrow x\in\left\{12; -12; -4; 4\right\}$ (tương ứng)
\(a.\left(x-3\right)\cdot\left(y+2\right)=7\)Ư(7) = {1;-1;7;-7}
\(=>x-3\inƯ\left(7\right);y+2\inƯ\left(7\right)\)
Th1 : x - 3 = 1 ; y + 2 = 7
x-3 =1
=> x =4
y + 2 =7
=> y=5
Th2 : x - 3 = 7 ; y + 2 = 1
x-3 = 7
=> x = 10
y + 2 =1
=> y = -1
Th3 : x - 3 = -1 ; y + 2 = -7
x - 3 = -1
=> x = 2
y + 2 = -7
=> y= -9
Th4 : x - 3 = -7 ; y + 2 = -1
x - 3 = -7
=> x = -4
y+2 =-1
=> y=-3
Vậy {(y=-3 ; x=-4), (y=-9;x=2);(y=-1;x=10); ( y=5 ; x =4 )}
b. xy -2y + 3x-6 = 3
y(x-2) + 3(x-2)= 3
(x-2) . (y + 3) = 3
x-2 ϵ Ư(3); y+3 ϵ Ư(3)
Ư(3) = {-1;1;-3;3)
Th1 : x -2 = -1 ; y+3 = -3
x-2 =-1 y+3=-3
=> x=1 => y=-6
Th2 : x -2 = -3 ; y+3 = -1
x-2=-3 y+3=-1
=> x= -1 => y =-4
Th3 : x -2 = 1; y+3 = 3
x-2 = 1 y+3=3
=> x=3 => y = 0
Th4 : x -2 = 3; y+3 = 1
x- 2 = 3 y +3 = 1
=> x = 5 => y = -2
Vậy {(y=-6 ; x=1), (y=-4;x=-1);(y=0;x=3); ( y=-2 ; x =5 )}
a, (\(x\) - 3)(\(y\) + 2) = 7
Ư(7) = { -7; -1; 1; 7}
Lập bảng ta có:
\(x-3\) | -7 | -1 | 1 | 7 |
\(x\) | -4 | 2 | 4 | 10 |
\(y\) + 2 | -1 | -7 | 7 | 1 |
\(y\) | -3 | -9 | 5 | -1 |
Theo bảng trên ta có:
Các cặp giá trị \(x;y\) nguyên thỏa mãn đề bài lần lượt là:
(\(x;y\)) = (-4; -3); (2; -9); (4; 5); (10; -1)
b, \(xy\) - 2\(y\) + 3\(x\) - 6 = 3
(\(xy\) + 3\(x\)) = 3 + 2\(y\) + 6
\(x\left(y+3\right)\) = 9 + 2\(y\)
\(x\) = (9 + 2\(y\)) : (\(y\) + 3)
\(x\) \(\in\) Z ⇔ 9 + 2\(y\)⋮\(y+3\) ⇒ 2\(y\) + 6 + 3 ⋮ \(y\)\(+3\)⇒2(\(y\)+3) + 3⋮\(y\)+ 3
⇒ 3 ⋮ \(y\) + 3
Ư(3) = (-3; -1; 1; 3}
Lập bảng ta có:
\(y\) + 3 | -3 | -1 | 1 | 3 |
\(y\) | -6 | -4 | -2 | 0 |
\(x\) = (9 + 2\(y\)): (\(y\)+3) | 1 | -1 | 5 | 3 |
(\(x;y\)) | (1;-6) | (-1; -4) | (5;-2) | (3;0) |
Theo bảng trên ta có các cặp \(x;y\) nguyên thỏa mãn đề bài lần lượt là:
(1; -6); (-1; -4); (5; -2) ;(3; 0)
\(\frac{2}{x}+\frac{y}{3}=\frac{1}{6}\) => \(\frac{y}{3}=\frac{1}{6}-\frac{2}{x}\) => \(\frac{y}{3}=\frac{x-12}{6x}\) => \(2y=\frac{x-12}{x}=1-\frac{12}{x}\)
Để 2y nguyên => x=(-12, -6,-4,-3,-2,-1,1,2,3,4,6,12) => 2y=(2, 3, 4, 5, 7, 13, -11,-5, -3, -2, -1, 0)
Do 2y chẵn => Chon được 2y=(2,4,-2,0) => y=(1,2,-1,0)
Các cặp (x,y) thỏa mãn là: (-12, 1); (-4,4); (4,-1); (12,0)
\(\left(2-x\right)\left(y+3\right)=6\)
mà \(x,y\)là số nguyên nên \(2-x,y+3\)là các ước của \(6\).
Ta có bảng giá trị: