K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 2 2016

ms hok lớp 6 thuj

3 tháng 9 2016

6x2+5xy-25y2-221=0

=>6x2-10xy+15xy-25y2=221

=>2x(3x-5y)+5y(3x-5y)=221

=>(3x-5y)(2x+5y)=211=13*17=1*221

Xét \(\begin{cases}3x-5y=1\\2x+5y=221\end{cases}\)\(\Rightarrow\begin{cases}5x=222\\2x+5y=221\end{cases}\)(ko có nghiệm nguyên)

Xét \(\begin{cases}3x-5y=13\\2x+5y=17\end{cases}\)\(\Rightarrow\begin{cases}5x=30\\2x+5y=17\end{cases}\)\(\Rightarrow\begin{cases}x=6\\y=1\end{cases}\)

Xét \(\begin{cases}3x-5y=17\\2x+5y=13\end{cases}\)\(\Rightarrow\begin{cases}5x=30\\2x+5y=13\end{cases}\)(ko có nghiệm nguyên)

Vậy pt trên có nghiệm là (6;1)

 

6 tháng 8 2022

phải xét cả th âm chứ bn vì đề bài không nói chỉ tìm no dương

 

AH
Akai Haruma
Giáo viên
26 tháng 8 2024

Lời giải:

$5xy-2y^2-2x^2=-2$

$\Rightarrow 2x^2+2y^2-5xy=2$

$\Rightarrow (2x-y)(x-2y)=2$

Với $x,y$ là số nguyên thì $2x-y, x-2y\in\mathbb{Z}$. Mà tích của hai số là 2 nên ta xét các TH sau:

TH1: $2x-y=1, x-2y=2\Rightarrow x=0; y=-1$

TH2: $2x-y=-1, x-2y=-2\Rightarrow x=0; y=1$

TH3: $2x-y=2, x-2y=1\Rightarrow x=1; y=0$

TH4: $2x-y=-2, x-2y=-1\Rightarrow x=-1; y=0$

12 tháng 1 2022

(x2 + 4xy + 4y2) + xy + 2y2 + x + 2y = 2

(x + 2y)2 + (x + 2y)(y + 1) = 2

(x + 2y)(x + 3y + 1) = 2

TH1: \(\hept{\begin{cases}x+2y=1\\x+3y+1=2\end{cases}}\)<=>\(\hept{\begin{cases}x=1\\y=0\end{cases}}\)(thỏa mãn)

TH2: \(\hept{\begin{cases}x+2y=2\\x+3y+1=1\end{cases}}\)<=> \(\hept{\begin{cases}x=6\\y=-2\end{cases}}\)(thỏa mãn)

TH3: \(\hept{\begin{cases}x+2y=-1\\x+3y+1=-2\end{cases}}\)<=> \(\hept{\begin{cases}x=3\\y=-2\end{cases}}\)(thỏa mãn)

TH4: \(\hept{\begin{cases}x+2y=-2\\\text{x+3y+1=-1}\end{cases}}\)<=>\(\hept{\begin{cases}x=-2\\y=0\end{cases}}\)(thỏa mãn)

17 tháng 8 2024

Mình nghĩ nên lập bảng tốt hơn

AH
Akai Haruma
Giáo viên
23 tháng 6 2024

a/

$x+y=xy$

$\Leftrightarrow xy-x-y=0$

$\Leftrightarrow x(y-1)-(y-1)=1$

$\Leftrightarrow (y-1)(x-1)=1$

Do $x,y$ nguyên nên $x-1,y-1$ cũng nguyên. Mà tích của chúng bằng 1 nên ta xét các TH sau:

TH1: $x-1=1, y-1=1\Rightarrow x=2; y=2$ (tm)

TH2: $x-1=-1, y-1=-1\Rightarrow x=0; y=0$ (tm)

 

AH
Akai Haruma
Giáo viên
23 tháng 6 2024

b/

$5xy-2y^2-2x^2=-2$

$\Leftrightarrow 2x^2-5xy+2y^2=2$

$\Leftrightarrow (2x-y)(x-2y)=2$

Do $x,y$ nguyên nên $2x-y, x-2y$ cũng là số nguyên. Mà tích của chúng bằng 2 nên ta xét các TH sau:
TH1: $2x-y=1, x-2y=2$

$\Rightarrow x=0; y=-1$

TH2: $2x-y=-1, x-2y=-2$

$\Rightarrow x=0; y=1$

TH3: $2x-y=2, x-2y=1$

$\Rightarrow x=1; y=0$

TH4: $2x-y=-2, x-2y=-1$

$\Rightarrow x=-1; y=0$