K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 2 2016

vì x-2 bình phương ko thể < 0 nên x-2 bình phương = 0 

suy ra x-2 bình phương = 0

vậy x=2

21 tháng 2 2016

x-1/x+2=x-2/x+3

=>(x-1)(x+3)=(x-2)(x+2)

=>x(x+3)-1(x+3)=x(x+2)-2(x+2)

=>x2+3x-x-3=x2+2x-2x-4

=>x2+2x-3=x2-4=>2x-3=-4=>2x=-1

=>x=-1/2=-,5

Vậy...

21 tháng 2 2016

Hoang Phuc: Chac k z pan???

11 tháng 1 2020

\(x^2+x=0\)\(\Leftrightarrow x\left(x+1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=0\\x+1=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0\\x=-1\end{cases}}\)

Vậy \(x=-1\)hoặc \(x=0\)

\(x^2+x=0\)

\(\Leftrightarrow x\left(x+1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=0\\x+1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=0\\x=-1\end{cases}}}\)

15 tháng 12 2016

sao giống câu hỏi của mình thế chỉ khác số bạn biết làm ko chỉ mình đikhocroikhocroi

17 tháng 8 2017

a) Ta có hằng đẳng thức \(a^3+b^3+c^3-3abc=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)\)

Vậy nên \(a^3+b^3+c^3+6=0.\left(a^2+b^2+c^2-ab-bc-ca\right)=0\)

\(\Rightarrow a^3+b^3+c^3=-6.\)

b) \(x^3+y^3+3xy=x^3+3xy\left(x+y\right)+y^3=x^3+3x^2y+3xy^2+y^3=\left(x+y\right)^3=1.\)

c) \(x^3-y^3-3xy=x^3-3xy\left(x-y\right)-y^3=x^3-3x^2y+3xy^2-y^3=\left(x-y\right)^3=1.\)

15 tháng 10 2020

3x2 + y2 + 10x - 2xy + 2021 = 0

<=> ( x2 - 2xy + y2 ) + ( 2x2 + 10x +\(\frac{25}{2}\)) +\(\frac{4017}{2}\)= 0

<=> ( x - y )2 + 2 ( x +\(\frac{5}{2}\))2 +\(\frac{4017}{2}\)= 0

Vì \(\hept{\begin{cases}\left(x-2\right)^2\ge0\\2\left(x+\frac{5}{2}\right)^2\ge0\end{cases}}\forall x\)=> ( x - y )2 + 2 ( x +\(\frac{5}{2}\))2 +\(\frac{4017}{2}\)\(\ge\frac{4017}{2}\)

=> Không có giá trị x ; y thỏa mãn pt trên

15 tháng 10 2020

3x2 + y2 + 10x - 2xy + 2021 = 0

<=> ( x2 - 2xy + y2 ) + ( 2x2 + 10x + 25/2 ) + 4017/2 = 0

<=> ( x - y )2 + 2( x2 + 5x + 25/4 ) + 4017/2 = 0

<=> ( x - y )2 + 2( x + 5/2 )2 + 4017/2 = 0 (*)

Ta có : \(\hept{\begin{cases}\left(x-y\right)^2\ge0\forall x,y\\2\left(x+\frac{5}{2}\right)^2\ge0\forall x\end{cases}}\Rightarrow\left(x-y\right)^2+2\left(x+\frac{5}{2}\right)^2+\frac{4017}{2}\ge\frac{4017}{2}>0\forall x,y\)

Tức là (*) sai

=> Không có giá trị x, y thỏa mãn

5 tháng 10 2017

b) Ta có:

\(\frac{a+b}{c}=\frac{b+c}{a}=\frac{c+a}{b}=\frac{a+b+b+c+c+a}{c+a+b}\) ( tính chất dãy tỉ số bằng nhau)

\(=\frac{2a+2b+2c}{a+b+c}=2\)

\(\Rightarrow\hept{\begin{cases}a+b=2c\\b+c=2a\\c+a=2b\end{cases}}\)

Ta có:

\(b+c=2a\)

\(\Rightarrow2b+2c=4a\)

Mà 2c=a+b

\(\Rightarrow\)2b+a+b=4a

\(\Rightarrow3b=3a\)

\(\Rightarrow a=b\)

Chứng minh tương tự:b=c;a=c

Thay vào biểu thức:

\(\left(1+\frac{a}{b}\right)\left(1+\frac{b}{c}\right)\left(1+\frac{c}{a}\right)=2\times2\times2=8\)8

15 tháng 3 2019

3x(x-2)-(x+2)=0

=> 3x2-6x-x-2 = 0

=>3x2-7x-2=0

=> 3x2-7x -2 = 0

=> x(3x-7) -2 = 0

=> TH1 : x=0

     TH2 : 3x-7 = 0 

=> x= \(\frac{7}{3}\)

Vậy x= 0 ; x= \(\frac{7}{3}\)

NHỚ TÍCH CHO TỚ