Một ô tô phải đi từ A đến B trong thời gian dự định.Sau khi đi được một nửa quảng đường thì ô tô tăng vận tốc thêm 20% do đó đến B sớm hơn dự định 10 phút. Tính thời gian ô tô đi từ A đến B ?
Giups mình với mai mình nộp rồi
Toán này là toán BD HSG
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi vận tốc của ôtô trong nửa quãng đường đầu là v(km/h;a>0)
vận tốc của ôtô trong nửa quãng đường còn lại là:v+20%v=6/5v
Đổi:10'=1/6h
Gọi thời gian ôtô đi trong nữa quãng đầu là t(h;t>0)
thời gian ôtô đi trong nửa quãng đường còn lại là: t-1/6
Vì cùng đi hết đường AB nên thời gian và vận tốc là 2 đại lượng tỉ lệ nghịch
gọi vận tốc ô tô dự định là x nủa quãng đương AB là a
ta có thời gian dự định là \(\frac{2a}{x}\)
thời gian thực tế mà ô tô đã đi là \(\frac{a}{x}+\frac{a}{120\%x}=\frac{a}{x}+\frac{5a}{6x}=\frac{11a}{6x}\)
ta có 10 phút bằng 10/6 giờ nên ta có
\(\frac{2a}{x}-\frac{1}{6}=\frac{11a}{6x}\)
suy ra \(\frac{12a-x}{6x}=\frac{11a}{6x}\)
suy ra 12a-x=11a
nên a=x
thay vào thời gian di của ô tô được 11/6 giờ
k nha
Gọi vận tốc của ô tô trong nửa quãng đường đầu là v (km/h; a > 0)
vận tốc của ô tô trong nửa quãng đường còn lại là: v + 20%v = \frac{6}{5}v56v
Đổi 10' = \frac{1}{6}h61h
Gọi thời gian ô tô đi trong nửa quãng đường đầu là t (h; t > 0)
thời gian ô tô đi trong nửa quãng đường còn lại là: t - \frac{1}{6}61
Vì cùng đi hết nửa quãng đường AB nên thời gian và vận tốc là 2 đại lượng tỉ lệ nghịch
Áp dụng tính chất của dãy tỉ số = nhau ta có:
\frac{t}{6}=\frac{t-\frac{1}{6}}{5}=\frac{t-\left(t-\frac{1}{6}\right)}{6-5}=\frac{1}{6}6t=5t−61=6−5t−(t−61)=61
\Rightarrow\begin{cases}t=\frac{1}{6}.6=1\\t-\frac{1}{6}=\frac{1}{6}.5=\frac{5}{6}\end{cases}⇒{t=61.6=1t−61=61.5=65
Vậy thời gian ô tô đi từ A -> B là:
t+\left(t-\frac{1}{6}\right)=1+\frac{5}{6}=\frac{11}{6}\left(h\right)t+(t−61)=1+65=611(h)
Gọi vận tốc của ô tô trong nửa quãng đường đầu là v (km/h; a > 0)
vận tốc của ô tô trong nửa quãng đường còn lại là: v + 20%v = \frac{6}{5}v56v
Đổi 10' = \frac{1}{6}h61h
Gọi thời gian ô tô đi trong nửa quãng đường đầu là t (h; t > 0)
thời gian ô tô đi trong nửa quãng đường còn lại là: t - \frac{1}{6}61
Vì cùng đi hết nửa quãng đường AB nên thời gian và vận tốc là 2 đại lượng tỉ lệ nghịch
Áp dụng tính chất của dãy tỉ số = nhau ta có:
\frac{t}{6}=\frac{t-\frac{1}{6}}{5}=\frac{t-\left(t-\frac{1}{6}\right)}{6-5}=\frac{1}{6}6t=5t−61=6−5t−(t−61)=61
\Rightarrow\begin{cases}t=\frac{1}{6}.6=1\\t-\frac{1}{6}=\frac{1}{6}.5=\frac{5}{6}\end{cases}⇒{t=61.6=1t−61=61.5=65
Vậy thời gian ô tô đi từ A -> B là:
t+\left(t-\frac{1}{6}\right)=1+\frac{5}{6}=\frac{11}{6}\left(h\right)t+(t−61)=1+65=611(h)
Bấm vô đây:
Câu hỏi của Sakura - Toán lớp 7 - Học toán với OnlineMath