K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Chọn B

2: 3-x<0

=>-x<-3

=>x>3

=>x=4

3: AH=căn 1*4=2cm

S ABC=1/2*2*5=5cm2

Câu 4:

Gọi chiều rộng là x

Chiều dài là 2x+9

Theo đề, ta có phương trình: x(2x+9)=200

\(\Leftrightarrow2x^2+9x-200=0\)

\(\Delta=9^2-4\cdot2\cdot\left(-200\right)=881>0\)

Do đó: Phương trình có hai nghiệm phân biệt là:

\(\left\{{}\begin{matrix}x_1=\dfrac{-9-29}{4}=\dfrac{-38}{4}\left(loại\right)\\x_2=\dfrac{-9+29}{4}=5\left(nhận\right)\end{matrix}\right.\)

Vậy: CHu vi là (2x+9+x)x2=(15+9)x2=48(m)

2 tháng 10 2021

\(a,\left\{{}\begin{matrix}AB=AC\left(\Delta ABC.cân.tại.A\right)\\\widehat{ABC}=\widehat{ACB}\left(\Delta ABC.cân.tại.A\right)\\AD.chung\end{matrix}\right.\Rightarrow\Delta ADB=\Delta ADC\left(ch-gn\right)\)

\(b,\)Áp dụng định lí Py-ta-go cho tam giác ABD vuông tại D

\(AD^2=AB^2-BD^2=36\\ \Rightarrow AD=6\left(cm\right)\)

\(c,\) Vì tam giác BAC cân tại A nên đường cao AD cũng là trung tuyến

Mà G là trọng tâm nên \(AG=\dfrac{2}{3}AD=\dfrac{2}{3}\cdot6=4\left(cm\right)\)

2 tháng 10 2021

câu c mình ko đọc thấy sorry nhé

24 tháng 9 2021

\(e,=\dfrac{\left(3+\sqrt{2}\right)\left(2\sqrt{2}+1\right)}{7}-\sqrt{\dfrac{\left(\sqrt{2}+1\right)^2}{\left(\sqrt{2}-1\right)\left(\sqrt{2}+1\right)}}\\ =\dfrac{7\sqrt{2}+7}{7}-\dfrac{\sqrt{2}+1}{1}=\sqrt{2}+1-\sqrt{2}-1=0\)

\(f,=\sqrt{\dfrac{\left(2\sqrt{3}-3\right)^2}{\left(2\sqrt{3}-3\right)\left(2\sqrt{3}+3\right)}}\left(2+\sqrt{3}\right)\\ =\dfrac{\left(2\sqrt{3}-3\right)\left(2+\sqrt{3}\right)}{\sqrt{3}}\\ =\dfrac{\sqrt{3}}{\sqrt{3}}=1\)

\(h,=\sqrt{\dfrac{\left(3\sqrt{5}-1\right)\left(2\sqrt{5}-3\right)}{20-9}}\left(\sqrt{2}+\sqrt{10}\right)\\ =\sqrt{\dfrac{2\left(33-11\sqrt{5}\right)}{11}}\left(\sqrt{5}+1\right)\\ =\sqrt{\dfrac{22\left(3-\sqrt{5}\right)}{11}}\left(\sqrt{5}+1\right)\\ =\sqrt{6-2\sqrt{5}}\left(\sqrt{5}+1\right)=\left(\sqrt{5}-1\right)\left(\sqrt{5}+1\right)=4\)

6 tháng 1 2022

\(d_{\dfrac{SO_2}{H_2}}=\dfrac{M_{SO_2}}{M_{H_2}}=\dfrac{64}{2}=32\)

6 tháng 1 2022

Lần sau đề hỏi nặng nhẹ nhớ kết luận vào nha em