Cho tam giác ABC vuông tại A, biết AB+ AC= 49 cm, AB-AC=7 cm. Tính BC?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: BC=căn 7^2+24^2=25cm
b: AB=căn BC^2-AC^2=3(cm)
c: AC=căn 25^2-15^2=20cm
Nếu AB + AC = 14; AB - AC = 2 thì
\(\Rightarrow\left\{{}\begin{matrix}2AB=14+2=16\\AC=14-AB\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}AB=16:2=8\\AC=14-8=6\end{matrix}\right.\)
Áp dụng định lý Pitago
\(BC^2=AB^2+AC^2\\ =\sqrt{6^2+8^2}=10\)
Bài 5:
Ta có: \(AB^2=BH\cdot BC\)
\(\Leftrightarrow BH\left(BH+9\right)=400\)
\(\Leftrightarrow BH^2+25HB-16HB-400=0\)
\(\Leftrightarrow BH=16\left(cm\right)\)
hay BC=25(cm)
Xét ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC
nên \(\left\{{}\begin{matrix}AC^2=CH\cdot BC\\AH\cdot BC=AB\cdot AC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AC=15\left(cm\right)\\AH=12\left(cm\right)\end{matrix}\right.\)
Bài 1:
Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(BC^2=AB^2+AC^2\)
\(\Leftrightarrow AC^2=15^2-9^2=144\)
hay AC=12(cm)
Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:
\(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AC^2=CH\cdot BC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}BH=\dfrac{9^2}{15}=\dfrac{81}{15}=5.4\left(cm\right)\\CH=\dfrac{12^2}{15}=\dfrac{144}{15}=9,6\left(cm\right)\end{matrix}\right.\)
Áp dụng định lí Pytago vào ΔAHB vuông tại H, ta được:
\(AH^2+HB^2=AB^2\)
\(\Leftrightarrow AH^2=9^2-5.4^2=51,84\)
hay AH=7,2(cm)
AB= (49+7) :2=28(cm)
AC=28-7=21(cm)
Áp dụng định lý Pytago:
AB2 +AC2=BC2
282+212=BC2
784+441=BC2
BC2=1225
=>BC=35(cm)
AB= (49+7) :2=28(cm)
AC=28-7=21(cm)
Áp dụng định lý Pytago:
AB2 +AC2=BC2
282+212=BC2
784+441=BC2
BC2=1225
=>BC=35(cm)