giải phương trình
\(x^2-12+\frac{36}{x^2}-4x+\frac{24}{x}=5\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ĐKXĐ:...
\(x^2+\frac{36}{x^2}-4\left(x-\frac{6}{x}\right)-17=0\)
Đặt \(x-\frac{6}{x}=a\Rightarrow a^2=x^2+\frac{36}{x^2}-12\Rightarrow x^2+\frac{36}{x^2}=a^2+12\)
\(a^2+12-4a-17=0\)
\(\Leftrightarrow a^2-4a-5=0\Rightarrow\left[{}\begin{matrix}a=-1\\a=5\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x-\frac{6}{x}=-1\\x-\frac{6}{x}=5\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x^2+x-6=0\\x^2-5x-6=0\end{matrix}\right.\)
\(x^2-12+\frac{36}{x^2}-4x+\frac{24}{x}=5\)
\(\Leftrightarrow x^2+\frac{36}{x^2}-4x+\frac{24}{x}=5+12\)
\(\Leftrightarrow x^2+\frac{36}{x^2}-4x+\frac{24}{x}=17\)
\(\Leftrightarrow x^2.x^2+\frac{36}{x^2}.x^2-4x.x^2+\frac{24}{x}.x^2=17x^2\)
\(\Leftrightarrow x^4+36-4x^3+24x=17x^2\)
\(\Leftrightarrow x^4+36-4x^3+24x=17x^2-17x^2\)
\(\Leftrightarrow x^4+36-4x^3+24x=0\)
\(\Leftrightarrow\left(x+1\right)\left(x-2\right)\left(x+3\right)\left(x-4\right)=0\)
\(\Rightarrow x\in\left\{-1;2;-3;4\right\}\)
a: ĐKXĐ: x<>5
Ta có: \(\frac{4x-3}{x-5}=\frac76\)
=>\(6\left(4x-3\right)=7\left(x-5\right)\)
=>24x-18=7x-35
=>17x=-35+18=-17
=>x=-1(nhận)
b: ĐKXĐ: x∉{0;-5}
Ta có: \(\frac{2x+5}{2x}-\frac{x}{x+5}=0\)
=>\(\frac{\left(2x+5\right)\left(x+5\right)-2x\cdot x}{2x\left(x+5\right)}=0\)
=>\(\left(2x+5\right)\left(x+5\right)-2x^2=0\)
=>\(2x^2+10x+5x+25-2x^2=0\)
=>15x=-25
=>\(x=-\frac{25}{15}=-\frac53\) (nhận)
c: ĐKXĐ: x<>1
Ta có: \(\frac{4x-5}{x-1}=2+\frac{x}{x-1}\)
=>\(\frac{4x-5}{x-1}=\frac{2x-2+x}{x-1}\)
=>4x-5=3x-2
=>4x-3x=-2+5
=>x=3(nhận)
\(ĐKXĐ:x\ne1;5;9\)
\(pt\Leftrightarrow\frac{2x-1}{\left(x-1\right)\left(x-5\right)}+\frac{\left(x-2\right)}{\left(x-1\right)\left(x-9\right)}=\frac{3x-12}{\left(x-9\right)\left(x+5\right)}\)
\(\Rightarrow\left(2x-1\right)\left(x-9\right)+\left(x-2\right)\left(x-9\right)=\left(3x-12\right)\left(x-1\right)\)
\(=>2x^2-x-18x+9+x^2-2x+5x-10=3x^2-12-3x+12\)
\(=>3x^2-16x-1=3x^2-15x+12\)
=>x=-13
a) 7x - 35 = 0
<=> 7x = 0 + 35
<=> 7x = 35
<=> x = 5
b) 4x - x - 18 = 0
<=> 3x - 18 = 0
<=> 3x = 0 + 18
<=> 3x = 18
<=> x = 5
c) x - 6 = 8 - x
<=> x - 6 + x = 8
<=> 2x - 6 = 8
<=> 2x = 8 + 6
<=> 2x = 14
<=> x = 7
d) 48 - 5x = 39 - 2x
<=> 48 - 5x + 2x = 39
<=> 48 - 3x = 39
<=> -3x = 39 - 48
<=> -3x = -9
<=> x = 3
ĐK \(x\ne\left\{1;2;3;4\right\}\)
Ta có \(\frac{x^2-2x+2}{x-1}+\frac{x^2-8x+20}{x-4}=\frac{x^2-4x+6}{x-2}+\frac{x^2-6x+12}{x-3}\)
\(\Leftrightarrow\frac{\left(x-1\right)^2+1}{x-1}+\frac{\left(x-4\right)^2+4}{x-4}=\frac{\left(x-2\right)^2+2}{x-2}+\frac{\left(x-3\right)^2+3}{x-3}\)
\(\Leftrightarrow x-1+\frac{1}{x-1}+x-4+\frac{4}{x-4}=x-2+\frac{2}{x-2}+x-3+\frac{3}{x-3}\)
\(\Leftrightarrow\frac{1}{x-1}+\frac{4}{x-4}=\frac{2}{x-2}+\frac{3}{x-3}\)
\(\Leftrightarrow\frac{5x-8}{x^2-5x+4}=\frac{5x-12}{x^2-5x+6}\)\(\Leftrightarrow\left(5x-8\right)\left(x^2-5x+6\right)=\left(5x-12\right)\left(x^2-5x+4\right)\)
\(\Leftrightarrow5x^3-25x^2+30x-8x^2+40x-48=5x^3-25x^2+20x-12x^2+60x-48\)
\(\Leftrightarrow4x^2-10x=0\Leftrightarrow\orbr{\begin{cases}x=0\\x=\frac{5}{2}\end{cases}\left(tm\right)}\)
Vậy x=0 hoặc x=5/2
quy đồng xong khử mẫu là okeee