Giải phương trình lượng giác biến đổi về dạng
Chú ý: Điều kiện để phương trình trên có nghiệm
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Thay m=-2 vào pt:
\(x^2-2.\left(-2+1\right).x-\left(-2+2\right)=0\\ \Leftrightarrow x^2+2x=0\\ \Leftrightarrow x.\left(x+2\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x+2=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x=-2\end{matrix}\right.\)
Với m= -2 => S= {-2;0}
b) Để phương trình trên có 1 nghiệm x1=2:
<=> 22 -2.(m+1).2-(m+2)=0
<=> 4-4m -4 -m-2=0
<=> -5m=2
<=>m=-2/5
c) ĐK của m để pt trên có nghiệm kép:
\(\Delta'=0\\ \Leftrightarrow\left(m+1\right)^2+1.\left(m+2\right)=0\\ \Leftrightarrow m^2+3m+3=0\)
Vô nghiệm.
- Điều kiện: x ≠ ±3
- Khử mẫu và biến đổi, ta được: x2 – 3x + 6 = x + 3 ⇔ x2 – 4x + 3 = 0.
- Nghiệm của phương trình x2 – 4x + 3 = 0 là: x1 = 1; x2 = 3
x1 có thỏa mãn điều kiện nói trên
x2 không thỏa mãn điều kiện nói trên
Vậy nghiệm của phương trình đã cho là: x = 1
- Điều kiện: x ≠ ±3
- Khử mẫu và biến đổi, ta được: x 2 – 3 x + 6 = x + 3 ⇔ x 2 – 4 x + 3 = 0 .
- Nghiệm của phương trình x 2 – 4 x + 3 = 0 l à : x 1 = 1 ; x 2 = 3
x 1 có thỏa mãn điều kiện nói trên
x 2 không thỏa mãn điều kiện nói trên
Vậy nghiệm của phương trình đã cho là: x = 1
a: Để phương trình có nghiệm thì (-2)^2-4(m-3)>=0
=>4-4m+12>=0
=>-4m+16>=0
=>-4m>=-16
=>m<=4
b: x1-x2=4
x1+x2=2
=>x1=3; x2=-1
x1*x2=m-3
=>m-3=-3
=>m=0(nhận)
a) Hệ đã cho vô nghiệm bởi vì mỗi nghiệm của hệ là nghiệm chung của hai phương trình, một phương trình vô nghiệm thì hệ không có nghiệm chung.
b) Hệ đã cho có vô số nghiệm.
Hệ đã cho vô nghiệm bởi vì mỗi nghiệm của hệ là nghiệm chung của hai phương trình, một phương trình vô nghiệm thì hệ không có nghiệm chung.
\(ĐK:x\le43\)
\(\sqrt{43-x}=x-1\)
\(\Leftrightarrow\left(\sqrt{43-x}\right)^2=\left(x-1\right)^2\)
\(\Leftrightarrow43-x=x^2-2x+1\)
\(\Leftrightarrow x^2-x-42=0\)
\(\Delta=\left(-1\right)^2-4.\left(-42\right)=1+168=169>0\)
\(\rightarrow\left\{{}\begin{matrix}x_1=\dfrac{1+\sqrt{169}}{2}=7\left(tm\right)\\x_2=\dfrac{1-\sqrt{169}}{2}=-6\left(tm\right)\end{matrix}\right.\)
Vậy \(S=\left\{7;-6\right\}\)
\(\sqrt{43-x}=x-1\left(đk:x\le43\right)\)
\(\Leftrightarrow\left|43-x\right|=\left(x-1\right)^2\)
\(\Leftrightarrow43-x=x^2-2x+1\)
\(\Leftrightarrow x^2-x-42=0\)
\(\Delta=\left(-1\right)^2-4.\left(-42\right)=169>0\)
Do \(\Delta\) > 0 nên pt có 2 nghiệm phân biện:
\(x_1=\dfrac{1+\sqrt{169}}{2}=7\left(TM\right)\)
\(x_2=\dfrac{1-\sqrt{169}}{2}=-6\left(TM\right)\)