K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 2 2021

1-x<0 =>1<x 

x-7<0 =>x<7

từ 2 điều trên =>1<x<7

23 tháng 2 2021

XX         -36

---     =

28          -63

26 tháng 6 2023

vì (x-7)(x+3)<0

=> (x-7) và (x+3) phải trái dấu

=> nếu x-7 < 0 thì x+3 >0

nếu x-7 >0 thì x+3<0

+ xét trường hợp 1 

=>x-7<0 =>x<7

  x+3>0 => x >-3

hay -3<x<7 ( thõa mãn)

+ xét trường hợp 2:

=> x-7>0 => x>7

     x+3<0 = >x<-3

=> vô lí x ko thể lớn hơn 7 mà bé hơn -3

vậy -3<x<7 (bạn tự liệt kê)

26 tháng 6 2023

Vì (x-7)(x+3)<0

(x-7) phải có dấu (x+3)

Nếu x-7<0 thì x+3>0 

- Xét trường hợp x-7<0 thì x+3>0

x-7<0 vậy x<7

x+3>0 vẫy>-3

-3<x<7

 

2 tháng 2 2021

Có \(1-x< 0\)=> \(1< x\)(1)

Có \(x-7< 0\)=>\(x< 7\)(2)

Từ (1) và (2)

=> \(1< x< 7\)

=>\(x\in\left(2;3;4;5;6\right)\)

Vậy \(x\in\left(2;3;4;5;6\right)\)

9 tháng 12 2018

\(3xy+x+15y-44=0\)

\(3y\left(x+5\right)+\left(x+5\right)-49=0\)

\(\left(x+5\right)\left(3y+1\right)=49\)

Vì x;y là số nguyên \(\Rightarrow\hept{\begin{cases}x+5\in Z\\3y+1\in Z\end{cases}}\)

Có \(\left(x+5\right)\left(3y+1\right)=49\)

\(\Rightarrow\left(x+5\right)\left(3y+1\right)\in\text{Ư}\left(49\right)=\left\{\pm1;\pm7;\pm49\right\}\)

b tự lập bảng nhé~

26 tháng 5 2016

xlaapj bảng xét dấy 

3 tháng 5 2019

a) \(6xy+4x-9y-7=0\)

  \(\Leftrightarrow2x.\left(3y+2\right)-9y-6-1=0\)

\(\Leftrightarrow2x.\left(3y+x\right)-3.\left(3y+2\right)=1\)

\(\Leftrightarrow\left(2x-3\right).\left(3y+2\right)=1\)

Mà \(x,y\in Z\Rightarrow2x-3;3y+2\in Z\)

Tự làm típ

4 tháng 5 2019

\(A=x^3+y^3+xy\)

\(A=\left(x+y\right)\left(x^2-xy+y^2\right)+xy\)

\(A=x^2-xy+y^2+xy\)( vì \(x+y=1\))

\(A=x^2+y^2\)

Áp dụng bất đẳng thức Bunhiakovxky ta có :

\(\left(1^2+1^2\right)\left(x^2+y^2\right)\ge\left(x\cdot1+y\cdot1\right)^2=\left(x+y\right)^2=1\)

\(\Leftrightarrow2\left(x^2+y^2\right)\ge1\)

\(\Leftrightarrow x^2+y^2\ge\frac{1}{2}\)

Hay \(x^3+y^3+xy\ge\frac{1}{2}\)

Dấu "=" xảy ra \(\Leftrightarrow x=y=\frac{1}{2}\)

3 tháng 9 2020

Bài làm:

Vì \(\hept{\begin{cases}-2-x< 0\\x-4< 0\end{cases}}\Leftrightarrow\hept{\begin{cases}x>-2\\x< 4\end{cases}}\)

=> \(-2< x< 4\)

Mà x là số nguyên

=> \(x\in\left\{-1;0;1;2;3\right\}\)

3 tháng 9 2020

\(\hept{\begin{cases}-2-x< 0\\x-4< 0\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}x>-2\\x< 4\end{cases}}\)

\(\Rightarrow-2< x< 4\)

\(\text{Xin điểm }\text{nha}\)