K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 10 2023

loading...  loading...  loading...  

a: DB=căn 8^2+6^2=10cm

HD=AD^2/BD=3,6cm

HB=10-3,6=6,4cm

b:

AH=6*8/10=4,8cm

AM=AB^2/AH=8^2/4,8=40/3(cm)

Bài 1: Cho hình chữ nhật ABCD có AB = 8cm, BC = 6cm. Vẽ đường cao AH của AADD . a) Tính DB b) Chứng minh AADH 24BDA c) Chứng minh AD = DHDB d) Chứng minh AAHB OABCD e) Tính độ dài đoạn thẳng DH, AH. Bài 2: Cho AABC vuông ở A, có AB = 6cm, AC = 8cm. Vẽ đường cao AH. a) Tính BC b) Chứng minh A ABC S AHBA c) Chứng minh AB = BH BC. Tính BH, HC d) Vẽ phân giác AD của góc A (D eBC). Tính DB Bài 3: Cho hình thang cân ABCD có AB // DC và AB< DC, đường chéo...
Đọc tiếp

Bài 1: Cho hình chữ nhật ABCD có AB = 8cm, BC = 6cm. Vẽ đường cao AH của AADD . a) Tính DB b) Chứng minh AADH 24BDA c) Chứng minh AD = DHDB d) Chứng minh AAHB OABCD e) Tính độ dài đoạn thẳng DH, AH. Bài 2: Cho AABC vuông ở A, có AB = 6cm, AC = 8cm. Vẽ đường cao AH. a) Tính BC b) Chứng minh A ABC S AHBA c) Chứng minh AB = BH BC. Tính BH, HC d) Vẽ phân giác AD của góc A (D eBC). Tính DB Bài 3: Cho hình thang cân ABCD có AB // DC và AB< DC, đường chéo BD vuông góc với cạnh bên BC. Vẽ đường cao AH, AK. a) Chứng minh ABDC O AHBC

b) Chứng minh BC = HC.DC | c) Chứng minh AKD 2ABHC.

c) Cho BC = 15cm, DC = 25 cm. Tính HC , HD. | d) Tính diện tích hình thang ABCD. | Bài 4: Cho AABC, các đường cao BD, CE cắt nhau tại H. Đường vuông góc với AB tại B và đường

vuông góc với AC tại C cắt nhau ở K.Gọi M là trung điểm của BC. | a) Chứng minh AADB 2AAEC.

b) Chứng minh HE.HC=HD.HB c) Chứng minh H, K, M thẳng hàng d) AABC phải có điều kiện gì thì tứ giác BHCK là hình thoi? Hình chữ nhật?

 

1

Bài 2:

a: BC=10cm

b: Xét ΔABC vuông tại A và ΔHBA vuông tại H có

góc B chung

Do đó:ΔABC\(\sim\)ΔHBA

c: Xét ΔABC vuông tại A có AH là đường cao

nên \(AB^2=BH\cdot BC\)

=>BH=36/10=3,6(cm)

=>CH=6,4(cm)

a: góc AEH=1/2*180=90 độ

=>HE vuông góc AB

góc AFH=1/2*180=90 độ

=>HF vuông góc AC

Vì góc AEH=góc AFH=góc FAE=90 độ

=>AEHF là hình chữ nhật

b: AEHF làhình chữ nhật

=>góc AFE=góc AHE=góc B

=>góc B+góc FCB=180 độ

=>BEFC nội tiếp

Xét ΔADC vuông tại D có DE là đường cao ứng với cạnh huyền AC nên ta có:

\(\dfrac{1}{DE^2}=\dfrac{1}{AD^2}+\dfrac{1}{DC^2}\)

\(\Leftrightarrow\dfrac{1}{DE^2}=\dfrac{1}{6^2}+\dfrac{1}{8^2}=\dfrac{25}{576}\)

\(\Leftrightarrow DE^2=23.04\)

hay DE=4,8(cm)

Áp dụng hệ thức lượng trong tam giác vuông vào ΔAFD vuông tại A có AE là đường cao ứng với cạnh huyền DF, ta được:

\(DA^2=DE\cdot DF\)

\(\Leftrightarrow DF=\dfrac{6^2}{4.8}=7,5\left(cm\right)\)

Ta có: DE+EF=DF(E nằm giữa D và F)

nên EF=DF-DE=7,5-4,8=2,7(cm)

Áp dụng định lí Pytago vào ΔADE vuông tại E, ta được:

\(AD^2=AE^2+DE^2\)

\(\Leftrightarrow AE^2=6^2-4.8^2=12.96\)

hay AE=3,6(cm)

Xét ΔAEF vuông tại E và ΔABC vuông tại B có 

\(\widehat{BAC}\) chung

Do đó: ΔAEF\(\sim\)ΔABC(g-g)

Suy ra: \(\dfrac{AE}{AB}=\dfrac{AF}{AC}\)(Các cặp cạnh tương ứng tỉ lệ)

hay \(AF=\dfrac{AE\cdot AC}{AB}=\dfrac{3.6\cdot8}{6}=4.8\left(cm\right)\)

Ta có: AF+FB=AB(F nằm giữa A và B)

nên BF=AB-AF=8-4,8=3,2(cm)