K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 3 2017

a) Xét hàm số y = f(x) = tanx – x với x ∈ [0 ; ).

Ta có : y’ = - 1 ≥ 0, x ∈ [0 ; ); y’ = 0 ⇔ x = 0. Vậy hàm số luôn đồng biến trên [0 ; ).

Từ đó ∀x ∈ (0 ; ) thì f(x) > f(0) ⇔ tanx – x > tan0 – 0 = 0 hay tanx > x.

b) Xét hàm số y = g(x) = tanx – x - . với x ∈ [0 ; ).

Ta có : y’ = - 1 - x2 = 1 + tan2x - 1 - x2 = tan2x - x2

= (tanx - x)(tanx + x), ∀x ∈ [0 ; ).

Vì ∀x ∈ [0 ; ) nên tanx + x ≥ 0 và tanx - x >0 (theo câu a).

Do đó y' ≥ 0, ∀x ∈ [0 ; ).

Dễ thấy y' = 0 ⇔ x = 0. Vậy hàm số luôn đồng biến trên [0 ; ). Từ đó : ∀x ∈ [0 ; ) thì g(x) > g(0) ⇔ tanx – x - > tan0 - 0 - 0 = 0 hay tanx > x + .

3 tháng 3 2019

Xét hàm số y = f(x) = tanx – x trên khoảng (0; π/2)

Ta có: y’ = Giải bài 5 trang 10 sgk Giải tích 12 | Để học tốt Toán 12 > 0 với ∀ x ∈ R.

⇒ hàm số đồng biến trên khoảng (0; π/2)

⇒ f(x) > f(0) = 0 với ∀ x > 0

hay tan x – x > 0 với ∀ x ∈ (0; π/2)

⇔ tan x > x với ∀ x ∈ (0; π/2) (đpcm).

3 tháng 8 2018

Xét hàm số y = g(x) = tanx - x - Giải bài 5 trang 10 sgk Giải tích 12 | Để học tốt Toán 12 trên Giải bài 5 trang 10 sgk Giải tích 12 | Để học tốt Toán 12

Giải bài 5 trang 10 sgk Giải tích 12 | Để học tốt Toán 12

Theo kết quả câu a): tanx > x ∀ x ∈ Giải bài 5 trang 10 sgk Giải tích 12 | Để học tốt Toán 12

⇒ g'(x) > 0 ∀ x ∈ Giải bài 5 trang 10 sgk Giải tích 12 | Để học tốt Toán 12

⇒ y = g'(x) đồng biến trên Giải bài 5 trang 10 sgk Giải tích 12 | Để học tốt Toán 12

⇒ g(x) > g(0) = 0 với ∀ x ∈ Giải bài 5 trang 10 sgk Giải tích 12 | Để học tốt Toán 12

Giải bài 5 trang 10 sgk Giải tích 12 | Để học tốt Toán 12

27 tháng 10 2017

Xét hàm số f(x) = tanx − sinx trên nửa khoảng [0;  π /2);

Giải sách bài tập Toán 12 | Giải sbt Toán 12

x ∈ [0;1/2)

Dấu “=” xảy ra khi x = 0.

Suy ra f(x) đồng biến trên nửa khoảng [0;  π /2)

Mặt khác, ta có f(0) = 0, nên f(x) = tanx – sinx > 0 hay tanx > sinx với mọi x  ∈  [0; 1/2)

10 tháng 7 2017

a) Xét hàm số f(x) = tanx − sinx trên nửa khoảng [0; π/2);

Giải sách bài tập Toán 12 | Giải sbt Toán 12

x ∈ [0;1/2)

Dấu “=” xảy ra khi x = 0.

Suy ra f(x) đồng biến trên nửa khoảng [0; π/2)

Mặt khác, ta có f(0) = 0, nên f(x) = tanx – sinx > 0 hay tanx > sinx với mọi x ∈ [0; 1/2)

b) Xét hàm số h(x) trên [0; + ∞ )

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Dấu “=” xẩy ra chỉ tại x = 0 nên h(x) đồng biến trên nửa khoảng [0;  + ∞ ).

Vì h(x) = 0 nên

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Hay

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Xét hàm số trên f(x) trên [0;  + ∞ );

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Vì g(0) = 0 và g(x) đồng biến trên nửa khoảng [0;  + ∞ ) nên g(x) ≥ 0, tức là f′(x) ≥ 0 trên khoảng đó và vì dấu “=” xảy ra chỉ tại x = 0 nên f(x) đồng biến trên nửa khoảng .

Mặt khác, ta có f(0) = 0 nên

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Với mọi 0 < x <  + ∞ .

24 tháng 1 2018

Cái này anh mình đăng chứ ko phải mình nha,đug hiểu lầm

23 tháng 5 2017

Ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm sốỨng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số

24 tháng 5 2017

g'(x) là đạo hàm của g(x) phải không bạn? Xét đạo hàm tới 2 lần lận à?

8 tháng 10 2020

\(x^2+xy+y^2+1>0\)

\(\Leftrightarrow x^2+2.x.\frac{1}{2}y+\frac{1}{4}y^2+\frac{3}{4}y^2+1>0\)

\(\Leftrightarrow\left(x+\frac{1}{2}y\right)^2+\frac{3}{4}y^2+1>1\)

=>ĐPCM

\(x^4+x^2+2>0\)

\(\Leftrightarrow\left(x^2\right)^2+2x^2.\frac{1}{2}+\frac{1}{4}+\frac{7}{4}\)

\(\Leftrightarrow\left(x^2+\frac{1}{2}\right)^2+\frac{7}{4}>\frac{7}{4}\)

=>ĐPCM

\(\left(x+3\right)\left(x-11\right)+2003>0\)

\(\Leftrightarrow x^2-8x-33+2003>0\)

\(\Leftrightarrow x^2-8x+16+1954>0\)

\(\Leftrightarrow\left(x-4\right)^2+1954>1954\)

=>ĐPCM

\(-9x^2+12x-15< 0\)

\(\Leftrightarrow-\left(3x^2+2.3.2x+4+11\right)< 0\)

\(\Leftrightarrow-\left[\left(3x+2\right)^2+11\right]< 11\)

=>ĐPCM

\(-5-\left(x-1\right)\left(x+2\right)< 0\)

\(\Leftrightarrow-5-\left(x^2-x-2\right)< 0\)

\(\Leftrightarrow-5-\left(x^2-2x.\frac{1}{2}+\frac{1}{4}-\frac{9}{4}\right)< 0\)

\(\Leftrightarrow-5-\left[\left(x-\frac{1}{2}\right)^2-\frac{9}{4}\right]< \frac{-11}{4}\)

=>ĐPCM