K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) Xét ΔABC có 

AD là đường phân giác ứng với cạnh BC(gt)

nên \(\dfrac{BD}{DC}=\dfrac{AB}{AC}\)(Tính chất đường phân giác của tam giác)

mà BD=AE(Hai cạnh đối trong hình bình hành ABDE)

nên \(\dfrac{AE}{DC}=\dfrac{AB}{AC}\)(đpcm)

b) Ta có: AE//BD(Hai cạnh đối của hình bình hành ABDE)

nên AE//BC(C∈BD)

hay \(\widehat{MAE}=\widehat{MCB}\)(hai góc so le trong)

Xét ΔMAE và ΔMCB có

\(\widehat{MAE}=\widehat{MCB}\)(cmt)

\(\widehat{AME}=\widehat{CMB}\)(hai góc đối đỉnh)

Do đó: ΔMAE∼ΔMCB(g-g)

 

27 tháng 1 2021

Câu d) bạn ơi

4 tháng 3 2019

giúp mik nha mọi người

4 tháng 3 2019

4555

30 tháng 4 2021

#muon roi ma sao con

A B C D F E G

a, Xét tam giác BEF và tam giác DEA ta có : 

^BEF = ^DEA ( đ.đ ) vì AD // BC ( ABCD là hình bình hành )

\(\frac{AE}{EF}=\frac{DE}{BE}\) do AD // BC ( theo định lí Ta lét ) (1) 

Vậy tam giác BEF ~ tam giác DEA ( c.g.c )

b, Xét tam giác EGD và tam giác EAB ta có : 

^GED = ^EAB ( đ.đ )

\(\frac{AE}{EG}=\frac{BE}{ED}\)AB // DG ( theo định lí Ta lét )  (2) 

Vậy tam giác EGD ~ tam giác EAB ( c.g.c )

\(\Rightarrow\frac{EG}{EA}=\frac{ED}{EB}\Rightarrow EG.EB=ED.EA\)( đpcm )

c, Từ (2) ta có : \(\frac{AE}{EG}=\frac{BE}{ED}\Rightarrow\frac{EG}{AE}=\frac{ED}{BE}\)( 3 ) 

Từ (1) ; (3) ta có : \(\frac{AE}{EF}=\frac{EG}{AE}=\frac{ED}{BE}\Rightarrow AE^2=EG.EF\)

30 tháng 4 2021

A B C D E F H 3 6

a, Xét tam giác AEB và tam giác AFC ta có 

^AEB = ^AEC = 900

^A _ chung 

Vậy tam giác AEB ~ tam giác AFC ( g.g )

\(\Rightarrow\frac{AE}{AF}=\frac{AB}{AC}\)( tỉ số đồng dạng ) \(\Rightarrow AE.AC=AB.AF\)

27 tháng 1 2016

Aquarius

27 tháng 1 2016

Bài 1:



+ ΔABC có Aˆ+ABCˆ+ACBˆ=180o. hay 60o+ABCˆ+ACBˆ=180o→ABCˆ+ACBˆ=120o

→ABCˆ+ACBˆ2=60o=ABCˆ2+ACBˆ2=B1ˆ+C1ˆ

+ Gọi CN∩BM=G

+ Δ có B1ˆ+C1ˆ+BGCˆ=180o. Hay 60o+BGCˆ=180o→BGCˆ=120o

+ Gọi GD là tia phân giác BGCˆ→G2ˆ=G3ˆ=60o

+ Tính G1ˆ=G4ˆ=G2ˆ=G3ˆ=60o

+ CM ΔNGB=ΔDGB (gcg) →BN=DB (2 cạnh tương ứng)

+CM ΔMGC=ΔDGC(gcg) →CM=CD (2 cạnh tương ứng)

+ Ta có BC=BD+CD=BN+CM (đpcm)