K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 3 2015

A=6+16+30+48+...+19600+19998

2A = 1.3+2.4+3.5+...+99.101 

B=2+5+9+14+...+4949+5049

2A = 1.4+2.5+3.6+...+99.102

C=1.2.3+2.3.4+3.4.5+...+98.99.100

4A = 1.2.3.4+2.3.4(5-1)+3.4.5.(6-2)+...+98.99.100.(101-97)
4A = 1.2.3.4+2.3.4.5-1.2.3.4+3.4.5.6-2.3.4.5+...+98.99.100.101-97.98.99.100
4A = 98.99.100.101

21 tháng 9 2016

A=6+16+30+48+...+19600+19998

A : 2 = 3 + 8 + 15 + 24  + . . . + 9800 + 9999

A : 2 = 1.3 + 2.4 + 3.5 + 4.6 + . . . + 98.100 + 99.101

A : 2 = 1.[1+2] + 2.[1+3] + 3.[1+4] + 4.[1+5] + . . . + 98.[1+99] + 99.[1+100]

A : 2 = 1 + 1.2 + 2 + 2.3 + 3 + 3.4 + 4 + 4.5 + . . . + 98 + 98.99 + 99 + 99.100

A : 2 = 1 + 2 + 3 + 4 + . . . + 199 + 1.2 + 2.3 + 3.4 + 4.5 + . . . + 98.99 + 99.100

A : 2 = 4950 + 333300

A = 676500

27 tháng 8 2023

mấy bạn trình bầy chi tiết hộ mình nhé, mình mới học

27 tháng 8 2023

Rùi , câu này tính hay rút gọn ey viết v đề ko có sao lm

4 tháng 1 2019

Bạn cho sai đề rồi ! 

Sửa : Chứng tỏ : \(\frac{1}{1.2.3}+\frac{1}{2.3.4}+\frac{1}{3.4.5}+...+\frac{1}{98.99.100}=\frac{4949}{9900}\)

Ta có :  \(VT=\frac{1}{1.2.3}+\frac{1}{2.3.4}+\frac{1}{3.4.5}+...+\frac{1}{98.99.100}\)

 \(=\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+\frac{1}{3.4}-\frac{1}{4.5}+...+\frac{1}{98.99}-\frac{1}{99.100}\)

\(=\frac{1}{1.2}-\frac{1}{99.100}\)

\(=\frac{99.100-2}{2.99.100}\)

\(=\frac{4949}{9900}=VP\)

Study well ! >_<

19 tháng 4 2016

= 1/2.(1/1.2 - 1/2.3 + 1/2.3 - 1/3.4 + 1/3.4 - 1/4.5 + 1/4.5 - ........+1/98.99 - 1/99.100 )

=1/2.(1/1.2 - 1/99.100)

=1/2 . 4949/9900

=4949/19800

4 tháng 3 2020

\(\frac{2\left(\frac{1}{1\cdot2\cdot3}+\frac{1}{2\cdot3\cdot4}+\frac{1}{3\cdot4\cdot5}+...+\frac{1}{98\cdot99\cdot100}\right)}{2}\)

(\(\frac{2}{1\cdot2\cdot3}+\frac{2}{2\cdot3\cdot4}+\frac{2}{3\cdot4\cdot5}+...+\frac{2}{98\cdot99\cdot100}\)) : 2

(\(\frac{1}{1\cdot2}-\frac{1}{2\cdot3}+\frac{1}{2\cdot3}-\frac{1}{3\cdot4}+...+\frac{1}{98\cdot99}-\frac{1}{99\cdot100}\)) : 2

4 tháng 3 2020

mình làm tiếp  nha lúc nãy lỡ tay

\(\frac{\left(\frac{1}{2}-\frac{1}{9900}\right)}{2}=\frac{4949}{19800}=VP\)

Vậy ....

20 tháng 7 2023

a/

\(b=\dfrac{1}{1.3}+\dfrac{1}{3.5}+\dfrac{1}{5.7}+...+\dfrac{1}{97.99}\)

\(2b=\dfrac{3-1}{1.3}+\dfrac{5-3}{3.5}+\dfrac{7-5}{5.7}+...+\dfrac{99-97}{97.99}=\)

\(=1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{97}-\dfrac{1}{99}=\)

\(=1-\dfrac{1}{99}=\dfrac{98}{99}\Rightarrow b=\dfrac{98}{2.99}=\dfrac{49}{99}\)

b/

\(c=\dfrac{3-1}{1.2.3}+\dfrac{4-2}{2.3.4}+\dfrac{5-3}{3.4.5}+...+\dfrac{100-98}{98.99.100}=\)

\(=\dfrac{1}{1.2}-\dfrac{1}{2.3}+\dfrac{1}{2.3}-\dfrac{1}{3.4}+\dfrac{1}{3.4}-\dfrac{1}{4.5}+\dfrac{1}{98.99}-\dfrac{1}{99.100}=\)

\(=\dfrac{1}{2}-\dfrac{1}{99.100}\)

c/

\(\dfrac{2}{5}.d=\dfrac{4-2}{2.3.4}+\dfrac{5-3}{3.4.5}+...+\dfrac{100-98}{98.99.100}+\dfrac{101-99}{99.100.101}=\)

\(=\dfrac{1}{2.3}-\dfrac{1}{3.4}+\dfrac{1}{3.4}-\dfrac{1}{4.5}+...+\dfrac{1}{98.99}-\dfrac{1}{99.100}+\dfrac{1}{99.100}-\dfrac{1}{100.101}=\)

\(=\dfrac{1}{2.3}-\dfrac{1}{100.101}\Rightarrow d=\left(\dfrac{1}{2.3}-\dfrac{1}{100.101}\right):\dfrac{2}{5}\)

23 tháng 1 2016

F=2725086001

J=656700

K=171600

28 tháng 8 2016

Đặt S=1.2.3+2.3.4+...+98.99.100

=>4S=1.2.3.4+2.3.4.4+...+98.99.100.4

=>3S=1.2.3(4-0)+2.3.4(5-1)+....+98.99.100(101-97)

=>4S=1.2.3.4-0.1.2.3+2.3.4.5-1.2.3.4+....+98.99.100.101-97.98.99.100

=>4S=98.99.100.101

=>S=24497550

4 tháng 3 2017

a) Ta có: \(3xy+x-3y=6\)

\(\Rightarrow x\left(3y+1\right)-3y=6\)

\(\Rightarrow x\left(3y+1\right)-\left(3y+1\right)=5\)

\(\Rightarrow\left(x-1\right)\left(3y+1\right)=5\)

Ta có bảng sau:

....

b) Ta có: \(\frac{1}{1.2.3}+\frac{1}{2.3.4}+...+\frac{1}{98.99.100}\)

\(=\frac{1}{2}\left(\frac{2}{1.2.3}+\frac{2}{2.3.4}+...+\frac{2}{98.99.100}\right)\)

\(=\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{98.99}-\frac{1}{99.100}\right)\)

\(=\frac{1}{2}\left(\frac{1}{2}-\frac{1}{99.100}\right)\)

\(=\frac{1}{2}\left(\frac{1}{2}-\frac{1}{9900}\right)\)

\(=\frac{1}{2}.\frac{4949}{9900}\)

\(=\frac{4949}{19800}\)

\(\Rightarrow\frac{1}{1.2.3}+\frac{1}{2.3.4}+...+\frac{1}{98.99.100}=\frac{4949}{19800}\left(đpcm\right)\)

Vậy...

4 tháng 3 2017

tiếp phần a) là gì