Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Có : c+7 là ước của 10
=> c+7 thuộc Ư(10)={1;-1;2;-2;5;-5;10;-10}
... (tự làm)
Có c+7 là Ư(10)={1;2;5;10;-1;-2;-5;-10}
=>c thuộc{-6;-5;-2;3;-8;-9;-12;-17}
Vậy.....
Ta có: b - 3 \(\in\)Ư(8b - 14)
<=> 8b - 14 \(⋮\)b - 3
<=> 8(b - 3) + 10 \(⋮\)b - 3
<=> 10 \(⋮\)b - 3
<=> b - 3 \(\in\)Ư(10) = {1; 2; 5; 10; -1; -2; -5; -10}
Lập bảng :
b - 3 | 1 | 2 | 5 | 10 | -1 | -2 | -5 | -10 |
b | 4 | 5 | 8 | 13 | 2 | 1 | -2 | -7 |
Vậy ....
Giải
b - 3 là ước số của 8b - 14.
\(\Rightarrow\left(8b-14\right)⋮\left(b-3\right)\)
\(\Rightarrow\left(8b-24+10\right)⋮\left(b-3\right)\)
\(\Rightarrow\left[8\left(b-3\right)+10\right]⋮\left(b-3\right)\)
Vì \(\left[8\left(b-3\right)\right]⋮\left(b-3\right)\) nên \(10⋮\left(b-3\right)\)
\(\Leftrightarrow b-3\inƯ\left(10\right)=\left\{\pm1;\pm2;\pm5;\pm10\right\}\)
Ta có bảng sau :
\(b-3\) | \(1\) | \(-1\) | \(2\) | \(-2\) | \(5\) | \(-5\) | \(10\) | \(-10\) |
\(b\) | \(4\) | \(2\) | \(5\) | \(-1\) | \(8\) | \(-2\) | \(13\) | \(-7\) |
Vậy \(b\in\left\{4;2;5;-1;8;-2;13;-7\right\}\)
c - 4 là ước số của -11
=>\(-11⋮ c-4\Rightarrow c-4\inƯ\left(-11\right)=\left\{\pm1;\pm11\right\}\)
\(\Rightarrow c\in\left\{5;3;15;-7\right\}\)
Vậy ......................
Có \(c-8\inƯ\left(8c-81\right)\) với \(c\inℤ\)
\(\Rightarrow8c-81⋮c-8\)
\(\Rightarrow8c-64-17⋮c-8\)
\(\Rightarrow-17⋮c-8\)(do \(8c-64⋮c-8\))
\(\Rightarrow c-8\inƯ\left(-17\right)\)
\(\Rightarrow c-8=\left\{\pm1;\pm17\right\}\)
Lập bảng giá trị tìm c
c - 8 | -1 | 1 | -17 | 17 |
c | 7 | 9 | -9 | 25 |
Vậy \(c\in\left\{7;\pm9;25\right\}\)
ta có c-2 là ước của 8c-1
Nên 8c-1\(⋮\)c-2
\(\Rightarrow\)8c-16+15\(⋮\)c-2
\(\Rightarrow\)8(c-2)+15\(⋮\)c-2
Mà 8(c-2)\(⋮\)c-2 (\(\forall\)c\(\in\)Z)
Nên 15\(⋮\)c-2
c-2\(\in\)Ư(15)={1;-1;3;-3;5;-5;15;-15}
\(\Rightarrow\)c\(\in\){3;1;5;-1;7;-3;17;-13}
c-2 là ước số của 8c-1
\(\Rightarrow8c-1⋮c-2\)
\(\Rightarrow8\left(c-2\right)+15⋮ c-2\)
\(\Rightarrow15⋮ c-2\)
\(\Rightarrow c-2\inƯ\left(15\right)=\left\{\pm1;\pm3;\pm5;\pm15\right\}\)
\(\Rightarrow c\in\left\{3;1;5;-1;7;-3;17;-13\right\}\)
Vậy..........................................................................
\(giai\)
\(\text{c+4 là ước số của 4c+33 }\)
\(\Leftrightarrow4c+33⋮c+4\Leftrightarrow4c+33-4\left(c+4\right)⋮c+4\Leftrightarrow17⋮c+4\)
\(\Leftrightarrow c+4\in\left\{\pm1;\pm17\right\}\Leftrightarrow c\in\left\{-3;-5;-21;13\right\}\)
c + 4 là ước số của 4c + 33
\(\Rightarrow4c+33⋮c+4\)
\(\Rightarrow4c+16+17=c+4\)
\(\Rightarrow4\left(c+4\right)+17⋮c+4\)
Mà : \(4\left(c+4\right)⋮c+4\)suy ra : \(17⋮c+4\)
\(\Rightarrow c+4\inƯ\left(17\right)=\left\{-17;-1;1;17\right\}\)
\(\Rightarrow c\in\left\{-21;-5;-3;13\right\}\)
=> 7c-43 chia hết cho c-4
Ta có: c-4 chia hết cho c-4
=>7(c-4) chia hết cho c-4
<=> 7c-28 chia hết cho c-4
Mà 7c-43 chia hết cho c-4
=>[(7c-28)-(7c-43)] chia hết cho c-4
<=> 15 chia hết cho c-4
=> c-4 thuộc U(15)={1;-1;3;-3;5;-5;15;-15}
=> c={5;3;7;1;9;-1;19;-11}
HỌC TỐT !
thế còn
Tìm a ∈ ℤ sao cho:
6a - 33 chia hết cho a - 8
giúp mình
c+7 là ước của 4c+40
=>4c+40 chia hết cho c+7
=>4c+28+12 chia hết cho c+7
=>4(c+7)+12 chia hết cho c+7
=>12 chia hết cho c+7
=>c+7 thuộc Ư(12)={1;-1;2;-2;3;-3;4;-4;6;-6;12;-12}
=>c thuộc {-6;-8;-5;-9;-4;-10;-3;-11;-1;-13;5;-19}
Tìm c ∈ ℤ sao cho:
c + 6 là ước số của 7c + 54
Đáp số c ∈ { -5;7;-4;8;-3;9;-2;10;0;12;6;18 }
Ta có : \(c+6\)là ước của \(7c+54\)
\(\Rightarrow7c+54⋮c+6\)
\(\Rightarrow7c+42+12⋮c+6\)
\(\Rightarrow7\left(c+6\right)+12⋮c+6\)
\(\Rightarrow12⋮c+6\)
\(\Rightarrow c+6\inƯ\left(12\right)=\left\{\pm1;\pm2;\pm3;\pm4;\pm6;\pm12\right\}\)
\(\Rightarrow c\in\left\{-5;-7;-4;-8;-2;-10;0;-12;6;-18\right\}\)
Vậy ...
ta có:
Ư(14)=(-1;1;-2;2;-7;7;-14;14)
vậy c thuộc (-8;-6;-9;-5;-14;0;-21;7)
k mik nha