Cho A=1+5+5^2+5^3+...+5^59
a)Chứng tỏ: A chia hết cho 31
b)So sánh A và B=5^60:4
GIÚP EM VỚI,EM CẦN GẤP!!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,A=\left(1+5+5^2\right)+\left(5^3+5^4+5^5\right)+...+\left(5^{57}+5^{58}+5^{59}\right)\\ A=\left(1+5+5^2\right)+5^3\left(1+5+5^2\right)+...+5^{57}\left(1+5+5^2\right)\\ A=\left(1+5+5^2\right)\left(1+5^3+...+5^{57}\right)\\ A=31\left(1+5^3+...+5^{57}\right)⋮31\\ b,5A=5+5^2+5^3+...+5^{60}\\ \Rightarrow5A-A=4A=5^{60}-1\\ \Rightarrow A=\dfrac{5^{60}-1}{4}=\dfrac{5^{60}}{4}-\dfrac{1}{4}< \dfrac{5^{60}}{4}=B\)
a. A = 1 + 5 + 52 + 53 + .... + 559
A = ( 1 + 5 + 52) + (53 + 54 + 55) +.....+ (557 + 558 + 559)
A = (1 + 5 + 52) + 53(1 + 5 + 52) + ..... + 557( 1 + 5 + 52)
A = (1 + 5 + 52)( 1 + 53 +......+ 557)
A = 31(1 + 53+.....+ 557)
Vì có một thừa số 31 nên A ⋮ 31
a: \(A=\left(1+5+5^2\right)+...+5^{57}\left(1+5+5^2\right)\)
\(=31\left(1+...+5^{57}\right)⋮31\)
Lời giải:
a.
$A=1+5+5^2+5^3+...+5^{59}$
$= (1+5+5^2)+(5^3+5^4+5^5)+....+(5^{57}+5^{58}+5^{59})$
$=(1+5+5^2)+5^3(1+5+5^2)+....+5^{57}(1+5+5^2)$
$=31+5^3,31+,,,,,+5^{57}.31$
$=31(1+5^3+...+5^{57})\vdots 31$ (đpcm)
b.
$A=1+5+5^2+...+5^{59}$
$5A=5+5^2+5^3+...+5^{60}$
$\Rightarrow 4A=5A-A=5^{60}-1< 5^{60}$
$\Rightarrow A< \frac{5^{60}}{4}=B$
a)
Ta có :A=275=27.27.27.27.27 Ta có :B=2433=243.243.243
=(3.3.3).(3.3.3)...(3.3.3)(có 5 nhóm) =(3.3.3.3.3).(3.3.3.3.3)...(3.3.3.3.3)(có 3 nhóm)
=3.3.3.3.3...3(15 thừa số 3) =3.3.3.3.3...3.3(có 15 thừa số 3)
=315 =315
Mà315=315
Nên 275=2433
=>A=B
b)Ta có:A=85=8.8.8.8.8 B=27
=(2.2.2).(2.2.2)...(2.2.2)(có 5 nhóm)
=2.2.2.2.2.2..2(có 15 thừ số 2)
Mà 215>27
Nên 85>27
=>A>B
c)(bạn tự tìm người giải ,mình bó)
d)A=1+2+22+23+24+..+21999 B=22000
2.A=2.(1+2+22+23+...+21999)
2.A=2+22+23+24+...+21999+22000
Ta có:2.A-A=(2+22+23+24+...+22000) - (1+2+22+23+...+21999)
A=22000-1
Mà 22000-1<22000
Nên A<B
Câu2:
A=4+42+43+44+...+460
4.A=4.(4+42+43+...+460)
4.A=42+43+44+...+460+461
4.A-4=(42+43+44+...+461)-(4+42+43+...+460)
A=\(\frac{4^{61}-4}{3}\)
bài 3 thì mình quên cách làm rồi để mai mình xem vở chỉ cho
1) C = 5 + 52 + 53 + 54 + ... + 520
= (5 + 52) + (53 + 54) + ... +(519 + 520)
= (5 + 52) + 52(5 + 52) + .... + 518(5 + 52)
= (5 + 52)(1 + 52 + ... + 518)
= 26(1 + 52 + ... + 518)
= 13.2.(1 + 52 + ... + 518) \(⋮\)13 (ĐPCM)
2) a) A = 24 + 25 + 26 + 27 + 28 + 29
= (24 + 25) + (26 + 27) + (28 + 29)
= 24(1 + 2) + 26(1 + 2) + 28(1 + 2)
= (1 + 2)(24 + 26 + 28)
= 3(24 + 26 + 28) \(⋮3\)
b) B = 317 + 318 + 319 + 320 + 321 + 322
= (317 + 318 + 319) + (320) + 321 + 322)
= 317(1 + 3 + 32) + 320(1 + 3 + 32)
= (1 + 3 + 32)(317 + 320)
= 13(317 + 320) \(⋮\)13
Bài 1:
C = 5+52 +53+.....+520
=(5+52+53+54)+.....+(517+518+519+520)
=5.(1+5+52+53)+.....+517(1+5+52+53)
=5.156+....+517.156
=156.(5+...+517)=13.12.(5+....+517) chia hết cho 13
Bài 2:
A=24+25+26+27+28+29
=(24+25)+(26+27)+(28+29)
=24(1+2)+26(1+2)+28(1+2)
=24.3+26.3+28.3
=3.(24+26+28) chia hết cho 3
b)
B=317+318+319+320+321+322
=(317+318+319)+(320+321+322)
=317(1+3+32)+320(1+3+32)
=317.13+320.13
=13.(317+320)chia hết cho 13
#CừU
Bạn vào câu hỏi tương tự là có nha !
Giải toán trên mạng - Giúp tôi giải toán - Hỏi đáp, thảo luận về toán học - Học toán với OnlineMath
A = (2 + 22 + 23 + 24) + (25 + 26 + 27 + 28) + ... + (257 + 258 + 259 + 260)
= (2 + 22 + 23 + 24) + 24.(2 + 22 + 23 + 24) + ... + 256.(2 + 22 + 23 + 24)
= 30 + 24.30 + ... + 256.30
= 30."(1 + 24 + ... + 256)
= 5.6.(1 + 24 + ... + 256) \(⋮\)5
=> \(A⋮5\left(\text{đpcm}\right)\)
Ta có : A = 2 + 22 + 23 + ... + 260
2A = 22 + 23 + ... + 260 + 261
2A - A = 261 - 2
A = 261 - 2
Vì 261 - 2 = 24x15+1 - 2 = ( 24)15 x 2 - 2 = 1615 x 2 - 2 = ....6 x 2 - 2 = ....2 - 2 = ....0
Mà ....0 chia hết cho 5
261 - 2 chia hết cho 5
2 + 22 + 23 + ... + 260 chia hết cho 5 ( đpcm )
Vậy A chia hết cho 5
\(A=1+5+5^2+5^3+...+5^{59}\)
\(=\left(1+5+5^2\right)+\left(5^3+5^4+5^5\right)+...+\left(5^{57}+5^{58}+5^{59}\right)\)
\(=\left(1+5+5^2\right)+5^3\left(1+5+5^2\right)+...+5^{57}\left(1+5+5^2\right)\)
\(=31\left(1+5^3+...+5^{57}\right)\)chia hết cho \(31\).
\(A=1+5+5^2+5^3+...+5^{59}\)
\(5A=5+5^2+5^3+5^4+...+5^{60}\)
\(5A-A=\left(5+5^2+5^3+5^4+...+5^{60}\right)-\left(1+5+5^2+5^3+...+5^{59}\right)\)
\(4A=5^{60}-1\)
\(A=\frac{5^{60}-1}{4}< \frac{5^{60}}{4}\).