so sánh 25 mux15 và 8 mũ 10 nhân 3 mũ 30
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1 : Viết các tổng sau thành bình phương của 1 số tự nhiên
A. 5 3 + 62 + 8
B . 2 + 32+ 42 + 132
Bài 2 : So sánh các số sau
A . 320 và 274
Ta có : 274 = (32)4 = 38
Vì 20 < 8 => 320 > 274
( Những câu còn lại tương tự ) - Tự làm nhé ! Mình bận ~
# Dương
Trả lời:
a, Ta có: 320 ; 274 = ( 33 )4 = 312
Vì 320 > 312 nên 320 > 274
b, 225 ; 166 = ( 24 )6 = 224
Vì 225 > 224 nên 225 > 166
a, 814 và 921= 82.7và 93.7
= (82)7 và (93)7
= 167 và 217
do 16<21 nên 167<217 hay 814<921
b,540 và 62010= 54.10 và 62010
= (54)10 và 62010
= 2010 và 62010
do 20<620 nên 2010< 62010 hay 540<62010
a) ta có: 3100 = (32)50 = 950
b) ta có: 330 = (33)10 = 2710 > 810
c) ta có: 36.67 = 62.67 = 69
Lại có: 433 > 427 = (43)9 = 649 > 69
=> 433>36.67
\(a,\)\(3^{100}\)\(=3^{2.50}\)=\(\left(3^2\right)\)\(^{50}\)\(=9^{50}\)
\(\Rightarrow\)\(3^{100}\)= \(9^{50}\)
a) Ta có :
\(27^{27}>27^{26}=\left(27^2\right)^{13}=729^{13}>243^{13}\)
\(\Rightarrow27^{27}>243^{13}\)
\(\Rightarrow-27^{27}< -243^{13}\)
\(\Rightarrow\left(-27\right)^{27}< \left(-243\right)^{13}\)
b) \(\left(\dfrac{1}{8}\right)^{25}>\left(\dfrac{1}{8}\right)^{26}=\left(\dfrac{1}{8^2}\right)^{13}=\left(\dfrac{1}{64}\right)^{13}>\left(\dfrac{1}{128}\right)^{13}\)
\(\Rightarrow\left(\dfrac{1}{8}\right)^{25}>\left(\dfrac{1}{128}\right)^{13}\)
\(\Rightarrow\left(-\dfrac{1}{8}\right)^{25}< \left(-\dfrac{1}{128}\right)^{13}\)
c) \(4^{50}=\left(4^5\right)^{10}=1024^{10}\)
\(8^{30}=\left(8^3\right)^{10}=512^{10}< 1024^{10}\)
\(\Rightarrow4^{50}>8^{30}\)
d) \(\left(\dfrac{1}{9}\right)^{17}< \left(\dfrac{1}{9}\right)^{12}< \left(\dfrac{1}{27}\right)^{12}\)
\(\Rightarrow\left(\dfrac{1}{9}\right)^{17}< \left(\dfrac{1}{27}\right)^{12}\)
Ta có: \(25^{15}=\left(5^2\right)^{15}=25^{30}\)
\(\left(-8\right)^{10}.3^{30}=8^{10}.3^{30}=\left(2^3\right)^{10}.3^{30}=2^{30}.3^{30}=\left(2.3\right)^{30}=6^{30}\)
Mà \(25^{30}>6^{30}\) nên \(25^{15}>\left(-8\right)^{10}.3^{30}\)
Vậy \(25^{15}>\left(-8\right)^{10}.3^{30}\)
ta có 25^15=(5^2)^15=5^30
(-8)^10 . 3^30=(2^3)^10 . 3^30=2^30 . 3^30=6^30
vì 5<6 nên 5^30<6^30
vậy 25^15 > (-8)^10 . 3^30
\(25^{15}=5^{30}\)
\(8^{10}\cdot3^{30}=6^{30}\)
Do đó: \(25^{15}< 8^{10}\cdot3^{30}\)