Tìm n thuộc N sao cho: 4n + 10 chia hết cho n + 2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
mình biết câu a
a=[n+10].[n+15]chia hết cho 2
khi n là số chẵn thì n +10 sẽ chia hết cho 2
khi n là số lẻ thì 15+n sẽ chia hết cho 2
nên a chia hết cho 2
a)nếu n=2k(kEN)
thì (n+10)(n+15)=(2k+10)(2k+15)=2k(2k+15)+10(2k+15)=4k^2+30k+20k+150=4k^2+50k+150 chia hết cho 2
nếu n=2k+1(kEN)
thì (n+10)(n+15)=(2k+1+10)(2k+1+15)=(2k+11)(2k+16)=2k(2k+16)+11(2k+16)=4k^2+32k+22k+176=4k^2+54k+176 chia hết cho 2
Vậy với mọi nEN thì A=(n+10)(n+15) chia hết cho 2
b)(4n-5) chia hết cho 2n-1
4n-2-3 chia hết cho 2n-1
2(2n-1)-3 chia hết cho 2n-1
=>3 chia hết cho 2n-1 hay 2n-1 E Ư(3)={1;3}
=>2nE{2;4}
=>n E{1;2}
Vậy để 4n-5 chia hết cho 2n-1 thì nE{1;2}
a) \(\left(n-7\right)⋮\left(n+2\right)\)\(\Rightarrow n+2-9⋮n+2\)mà \(n+2⋮n+2\)\(\Rightarrow9⋮n+2\Rightarrow n+2\inƯ\left(9\right)\)
\(\Rightarrow n+2=\left\{\pm1;\pm3;\pm9\right\}\)\(\Rightarrow n=\left\{-3;\pm1;-5;-11;7\right\}\)
b) \(4n+7⋮n-3\Rightarrow4n-12+19⋮n-3\)mà \(4n-12=4\left(n-3\right)\Rightarrow4n-12⋮n-3\Rightarrow19⋮n-3\)
\(\Rightarrow n-3\inƯ\left(19\right)\Rightarrow n-3=\left\{\pm1;\pm19\right\}\Rightarrow n=\left\{2;3;-16;22\right\}\)
a) \(4\left(n-1\right)-3⋮\left(n-1\right)\)
\(\Rightarrow\left(n-1\right)\inƯ\left(3\right)=\left\{-3;-1;1;3\right\}\)
Do \(n\in N\Rightarrow n\in\left\{0;2;4\right\}\)
b) \(-5\left(4-n\right)+12⋮\left(4-n\right)\)
\(\Rightarrow\left(4-n\right)\inƯ\left(12\right)=\left\{-12;-6;-4;-3;-2;-1;1;2;3;4;6;12\right\}\)
Do \(n\in N\Rightarrow n\in\left\{16;10;8;7;6;5;3;2;1;0\right\}\)
c) \(-2\left(n-2\right)+6⋮\left(n-2\right)\)
\(\Rightarrow\left(n-2\right)\inƯ\left(6\right)=\left\{-6;-3;-2;-1;1;2;3;6\right\}\)
Do \(n\in N\Rightarrow n\in\left\{0;1;3;4;5;8\right\}\)
d) \(n\left(n+3\right)+6⋮\left(n+3\right)\)
\(\Rightarrow\left(n+3\right)\inƯ\left(6\right)=\left\{-6;-3;-2;-1;1;2;3;6\right\}\)
Do \(n\in N\Rightarrow n\in\left\{0;3\right\}\)
\(\Leftrightarrow4\left(n+2\right)+2⋮n+2\\ \Leftrightarrow n+2\inƯ\left(2\right)=\left\{-2;-1;1;2\right\}\\ \Leftrightarrow n=0\left(n\in N\right)\)
\(\Leftrightarrow n+2=2\)
hay n=0